These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 9507074)
1. Identification of residues in the Gla-domain of human factor IX involved in the binding to conformation specific antibodies. Wojcik EG; Cheung WF; van den Berg M; van der Linden IK; Stafford DW; Bertina RM Biochim Biophys Acta; 1998 Jan; 1382(1):91-101. PubMed ID: 9507074 [TBL] [Abstract][Full Text] [Related]
2. Localization of a calcium-dependent epitope to the amino terminal region of the Gla domain of human factor IX. Cheung WF; Stafford DW; Sugo T Thromb Res; 1996 Jan; 81(1):65-73. PubMed ID: 8747521 [TBL] [Abstract][Full Text] [Related]
3. Discontinuous residues of factor IX constitute a surface for binding the anti-factor IX monoclonal antibody A-5. Chang YJ; Wu HL; Hsu YC; Hamaguchi N; Shi GY; Shen MC; Lin SW Thromb Res; 2003; 111(4-5):293-9. PubMed ID: 14693178 [TBL] [Abstract][Full Text] [Related]
4. Localization of the specific binding site for magnesium(II) ions in factor IX. Sekiya F; Yoshida M; Yamashita T; Morita T FEBS Lett; 1996 Sep; 392(3):205-8. PubMed ID: 8774845 [TBL] [Abstract][Full Text] [Related]
5. The factor IX phospholipid-binding site is required for calcium-dependent activation of factor IX by factor XIa. Liebman HA; Furie BC; Furie B J Biol Chem; 1987 Jun; 262(16):7605-12. PubMed ID: 3108254 [TBL] [Abstract][Full Text] [Related]
6. Factor IX Zutphen: a Cys18-->Arg mutation results in formation of a heterodimer with alpha 1-microglobulin and the inability to form a calcium-induced conformation. Wojcik EG; van den Berg M; van der Linden IK; Poort SR; Cupers R; Bertina RM Biochem J; 1995 Nov; 311 ( Pt 3)(Pt 3):753-9. PubMed ID: 7487929 [TBL] [Abstract][Full Text] [Related]
7. The N-terminal epidermal growth factor-like domain of coagulation factor IX. Probing its functions in the activation of factor IX and factor X with a monoclonal antibody. Persson KE; Villoutreix BO; Thämlitz AM; Knobe KE; Stenflo J J Biol Chem; 2002 Sep; 277(38):35616-24. PubMed ID: 12105230 [TBL] [Abstract][Full Text] [Related]
8. Modification of the N-terminus of human factor IX by defective propeptide cleavage or acetylation results in a destabilized calcium-induced conformation: effects on phospholipid binding and activation by factor XIa. Wojcik EG; Van Den Berg M; Poort SR; Bertina RM Biochem J; 1997 May; 323 ( Pt 3)(Pt 3):629-36. PubMed ID: 9169594 [TBL] [Abstract][Full Text] [Related]
9. gamma-Carboxyglutamic acids 36 and 40 do not contribute to human factor IX function. Gillis S; Furie BC; Furie B; Patel H; Huberty MC; Switzer M; Foster WB; Scoble HA; Bond MD Protein Sci; 1997 Jan; 6(1):185-96. PubMed ID: 9007991 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of the calcium-stabilized human factor IX Gla domain bound to a conformation-specific anti-factor IX antibody. Huang M; Furie BC; Furie B J Biol Chem; 2004 Apr; 279(14):14338-46. PubMed ID: 14722079 [TBL] [Abstract][Full Text] [Related]
11. Derivatives of blood coagulation factor IX contain a high affinity Ca2+-binding site that lacks gamma-carboxyglutamic acid. Morita T; Isaacs BS; Esmon CT; Johnson AE J Biol Chem; 1984 May; 259(9):5698-704. PubMed ID: 6425296 [TBL] [Abstract][Full Text] [Related]
12. The metal-dependent conformational changes in factor IX associated with phospholipid binding. Studies using antibodies against a synthetic peptide and chemical modification of factor IX. Liebman HA Eur J Biochem; 1993 Mar; 212(2):339-45. PubMed ID: 7680311 [TBL] [Abstract][Full Text] [Related]
13. Regulation of the tertiary structure and function of coagulation factor IX by magnesium (II) ions. Sekiya F; Yamashita T; Atoda H; Komiyama Y; Morita T J Biol Chem; 1995 Jun; 270(24):14325-31. PubMed ID: 7782291 [TBL] [Abstract][Full Text] [Related]
14. Localization of a metal-dependent epitope to the amino terminal residues 33-40 of human factor IX. Cheung WF; Wolberg AS; Stafford DW; Smith KJ Thromb Res; 1995 Dec; 80(5):419-27. PubMed ID: 8588203 [TBL] [Abstract][Full Text] [Related]
15. Properties of recombinant chimeric human protein C and activated protein C containing the gamma-carboxyglutamic acid and trailing helical stack domains of protein C replaced by those of human coagulation factor IX. Christiansen WT; Castellino FJ Biochemistry; 1994 May; 33(19):5901-11. PubMed ID: 8180219 [TBL] [Abstract][Full Text] [Related]
16. Mutations in the catalytic domain of factor IX that are related to the subclass hemophilia Bm. Hamaguchi N; Roberts H; Stafford DW Biochemistry; 1993 Jun; 32(25):6324-9. PubMed ID: 8518277 [TBL] [Abstract][Full Text] [Related]
17. Influence of specific gamma-carboxyglutamic acid residues on the integrity of the calcium-dependent conformation of human protein C. Zhang L; Castellino FJ J Biol Chem; 1992 Dec; 267(36):26078-84. PubMed ID: 1464619 [TBL] [Abstract][Full Text] [Related]
18. Characterization of gamma-carboxyglutamic acid residue 21 of human factor IX. Wolberg AS; Li L; Cheung WF; Hamaguchi N; Pedersen LG; Stafford DW Biochemistry; 1996 Aug; 35(32):10321-7. PubMed ID: 8756687 [TBL] [Abstract][Full Text] [Related]
19. The binding of human factor IX to endothelial cells is mediated by residues 3-11. Cheung WF; Hamaguchi N; Smith KJ; Stafford DW J Biol Chem; 1992 Oct; 267(29):20529-31. PubMed ID: 1400370 [TBL] [Abstract][Full Text] [Related]
20. Anti-human factor IX monoclonal antibodies specific for calcium ion-induced conformations. Sugo T; Mizuguchi J; Kamikubo Y; Matsuda M Thromb Res; 1990 Jun; 58(6):603-14. PubMed ID: 2385830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]