BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 9507074)

  • 1. Identification of residues in the Gla-domain of human factor IX involved in the binding to conformation specific antibodies.
    Wojcik EG; Cheung WF; van den Berg M; van der Linden IK; Stafford DW; Bertina RM
    Biochim Biophys Acta; 1998 Jan; 1382(1):91-101. PubMed ID: 9507074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of a calcium-dependent epitope to the amino terminal region of the Gla domain of human factor IX.
    Cheung WF; Stafford DW; Sugo T
    Thromb Res; 1996 Jan; 81(1):65-73. PubMed ID: 8747521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discontinuous residues of factor IX constitute a surface for binding the anti-factor IX monoclonal antibody A-5.
    Chang YJ; Wu HL; Hsu YC; Hamaguchi N; Shi GY; Shen MC; Lin SW
    Thromb Res; 2003; 111(4-5):293-9. PubMed ID: 14693178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of the specific binding site for magnesium(II) ions in factor IX.
    Sekiya F; Yoshida M; Yamashita T; Morita T
    FEBS Lett; 1996 Sep; 392(3):205-8. PubMed ID: 8774845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The factor IX phospholipid-binding site is required for calcium-dependent activation of factor IX by factor XIa.
    Liebman HA; Furie BC; Furie B
    J Biol Chem; 1987 Jun; 262(16):7605-12. PubMed ID: 3108254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factor IX Zutphen: a Cys18-->Arg mutation results in formation of a heterodimer with alpha 1-microglobulin and the inability to form a calcium-induced conformation.
    Wojcik EG; van den Berg M; van der Linden IK; Poort SR; Cupers R; Bertina RM
    Biochem J; 1995 Nov; 311 ( Pt 3)(Pt 3):753-9. PubMed ID: 7487929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The N-terminal epidermal growth factor-like domain of coagulation factor IX. Probing its functions in the activation of factor IX and factor X with a monoclonal antibody.
    Persson KE; Villoutreix BO; Thämlitz AM; Knobe KE; Stenflo J
    J Biol Chem; 2002 Sep; 277(38):35616-24. PubMed ID: 12105230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of the N-terminus of human factor IX by defective propeptide cleavage or acetylation results in a destabilized calcium-induced conformation: effects on phospholipid binding and activation by factor XIa.
    Wojcik EG; Van Den Berg M; Poort SR; Bertina RM
    Biochem J; 1997 May; 323 ( Pt 3)(Pt 3):629-36. PubMed ID: 9169594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. gamma-Carboxyglutamic acids 36 and 40 do not contribute to human factor IX function.
    Gillis S; Furie BC; Furie B; Patel H; Huberty MC; Switzer M; Foster WB; Scoble HA; Bond MD
    Protein Sci; 1997 Jan; 6(1):185-96. PubMed ID: 9007991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the calcium-stabilized human factor IX Gla domain bound to a conformation-specific anti-factor IX antibody.
    Huang M; Furie BC; Furie B
    J Biol Chem; 2004 Apr; 279(14):14338-46. PubMed ID: 14722079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Derivatives of blood coagulation factor IX contain a high affinity Ca2+-binding site that lacks gamma-carboxyglutamic acid.
    Morita T; Isaacs BS; Esmon CT; Johnson AE
    J Biol Chem; 1984 May; 259(9):5698-704. PubMed ID: 6425296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The metal-dependent conformational changes in factor IX associated with phospholipid binding. Studies using antibodies against a synthetic peptide and chemical modification of factor IX.
    Liebman HA
    Eur J Biochem; 1993 Mar; 212(2):339-45. PubMed ID: 7680311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the tertiary structure and function of coagulation factor IX by magnesium (II) ions.
    Sekiya F; Yamashita T; Atoda H; Komiyama Y; Morita T
    J Biol Chem; 1995 Jun; 270(24):14325-31. PubMed ID: 7782291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of a metal-dependent epitope to the amino terminal residues 33-40 of human factor IX.
    Cheung WF; Wolberg AS; Stafford DW; Smith KJ
    Thromb Res; 1995 Dec; 80(5):419-27. PubMed ID: 8588203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of recombinant chimeric human protein C and activated protein C containing the gamma-carboxyglutamic acid and trailing helical stack domains of protein C replaced by those of human coagulation factor IX.
    Christiansen WT; Castellino FJ
    Biochemistry; 1994 May; 33(19):5901-11. PubMed ID: 8180219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations in the catalytic domain of factor IX that are related to the subclass hemophilia Bm.
    Hamaguchi N; Roberts H; Stafford DW
    Biochemistry; 1993 Jun; 32(25):6324-9. PubMed ID: 8518277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of specific gamma-carboxyglutamic acid residues on the integrity of the calcium-dependent conformation of human protein C.
    Zhang L; Castellino FJ
    J Biol Chem; 1992 Dec; 267(36):26078-84. PubMed ID: 1464619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of gamma-carboxyglutamic acid residue 21 of human factor IX.
    Wolberg AS; Li L; Cheung WF; Hamaguchi N; Pedersen LG; Stafford DW
    Biochemistry; 1996 Aug; 35(32):10321-7. PubMed ID: 8756687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The binding of human factor IX to endothelial cells is mediated by residues 3-11.
    Cheung WF; Hamaguchi N; Smith KJ; Stafford DW
    J Biol Chem; 1992 Oct; 267(29):20529-31. PubMed ID: 1400370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-human factor IX monoclonal antibodies specific for calcium ion-induced conformations.
    Sugo T; Mizuguchi J; Kamikubo Y; Matsuda M
    Thromb Res; 1990 Jun; 58(6):603-14. PubMed ID: 2385830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.