BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 9507080)

  • 1. An analysis of maleless and histone H4 acetylation in Drosophila melanogaster spermatogenesis.
    Rastelli L; Kuroda MI
    Mech Dev; 1998 Feb; 71(1-2):107-17. PubMed ID: 9507080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster.
    Gu W; Szauter P; Lucchesi JC
    Dev Genet; 1998; 22(1):56-64. PubMed ID: 9499580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The NTPase/helicase activities of Drosophila maleless, an essential factor in dosage compensation.
    Lee CG; Chang KA; Kuroda MI; Hurwitz J
    EMBO J; 1997 May; 16(10):2671-81. PubMed ID: 9184214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of dosage compensation in Diptera: the gene maleless implements dosage compensation in Drosophila (Brachycera suborder) but its homolog in Sciara (Nematocera suborder) appears to play no role in dosage compensation.
    Ruiz MF; Esteban MR; Doñoro C; Goday C; Sánchez L
    Genetics; 2000 Dec; 156(4):1853-65. PubMed ID: 11102379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-dependent association of the Drosophila maleless protein with the male X chromosome.
    Richter L; Bone JR; Kuroda MI
    Genes Cells; 1996 Mar; 1(3):325-36. PubMed ID: 9133666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that MSL-mediated dosage compensation in Drosophila begins at blastoderm.
    Franke A; Dernburg A; Bashaw GJ; Baker BS
    Development; 1996 Sep; 122(9):2751-60. PubMed ID: 8787749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dosage compensation regulators MLE, MSL-1 and MSL-2 are interdependent since early embryogenesis in Drosophila.
    Rastelli L; Richman R; Kuroda MI
    Mech Dev; 1995 Oct; 53(2):223-33. PubMed ID: 8562424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila.
    Kuroda MI; Kernan MJ; Kreber R; Ganetzky B; Baker BS
    Cell; 1991 Sep; 66(5):935-47. PubMed ID: 1653648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the sex-specific binding of the maleless dosage compensation protein to the male X chromosome in Drosophila.
    Gorman M; Kuroda MI; Baker BS
    Cell; 1993 Jan; 72(1):39-49. PubMed ID: 8422681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mutually exclusive stem-loop arrangement in roX2 RNA is essential for X-chromosome regulation in
    Ilik IA; Maticzka D; Georgiev P; Gutierrez NM; Backofen R; Akhtar A
    Genes Dev; 2017 Oct; 31(19):1973-1987. PubMed ID: 29066499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell RNA-sequencing reveals pre-meiotic X-chromosome dosage compensation in Drosophila testis.
    Witt E; Shao Z; Hu C; Krause HM; Zhao L
    PLoS Genet; 2021 Aug; 17(8):e1009728. PubMed ID: 34403408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex.
    Meller VH; Rattner BP
    EMBO J; 2002 Mar; 21(5):1084-91. PubMed ID: 11867536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila.
    Bone JR; Lavender J; Richman R; Palmer MJ; Turner BM; Kuroda MI
    Genes Dev; 1994 Jan; 8(1):96-104. PubMed ID: 8288132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dosage compensation regulatory proteins and the evolution of sex chromosomes in Drosophila.
    Bone JR; Kuroda MI
    Genetics; 1996 Oct; 144(2):705-13. PubMed ID: 8889531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural insights reveal the specific recognition of roX RNA by the dsRNA-binding domains of the RNA helicase MLE and its indispensable role in dosage compensation in Drosophila.
    Lv M; Yao Y; Li F; Xu L; Yang L; Gong Q; Xu YZ; Shi Y; Fan YJ; Tang Y
    Nucleic Acids Res; 2019 Apr; 47(6):3142-3157. PubMed ID: 30649456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Male-specific lethal complex of Drosophila targets activated regions of the X chromosome for chromatin remodeling.
    Sass GL; Pannuti A; Lucchesi JC
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8287-91. PubMed ID: 12829796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dosage compensation and chromatin structure in Drosophila.
    Bashaw GJ; Baker BS
    Curr Opin Genet Dev; 1996 Aug; 6(4):496-501. PubMed ID: 8791531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drosophila maleless gene counteracts X global aneuploid effects in males.
    Bhadra U; Gandhi SG; Palaparthi R; Balyan MK; Pal-Bhadra M
    FEBS J; 2016 Sep; 283(18):3457-70. PubMed ID: 27456781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence-specific targeting of dosage compensation in Drosophila favors an active chromatin context.
    Alekseyenko AA; Ho JW; Peng S; Gelbart M; Tolstorukov MY; Plachetka A; Kharchenko PV; Jung YL; Gorchakov AA; Larschan E; Gu T; Minoda A; Riddle NC; Schwartz YB; Elgin SC; Karpen GH; Pirrotta V; Kuroda MI; Park PJ
    PLoS Genet; 2012; 8(4):e1002646. PubMed ID: 22570616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting the chromatin-remodeling MSL complex of Drosophila to its sites of action on the X chromosome requires both acetyl transferase and ATPase activities.
    Gu W; Wei X; Pannuti A; Lucchesi JC
    EMBO J; 2000 Oct; 19(19):5202-11. PubMed ID: 11013222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.