These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 9507133)

  • 121. Production of novel tetrahydroxyfuranyl fatty acids from alpha-linolenic acid by Clavibacter sp. strain ALA2.
    Hosokawa M; Hou CT; Weisleder D
    Appl Environ Microbiol; 2003 Jul; 69(7):3868-73. PubMed ID: 12839755
    [TBL] [Abstract][Full Text] [Related]  

  • 122. A simple method for collecting 14CO2 in fish.
    Bengtsson BE; Brandt I; Darnerud PO; Larsson J
    Toxicol Lett; 1983 Dec; 19(3):339-44. PubMed ID: 6419401
    [TBL] [Abstract][Full Text] [Related]  

  • 123. The metabolism of D- and L-pipecolic acid in the rabbit and rat.
    Dancis J; Hutzler J
    Biochim Biophys Acta; 1981 Jul; 675(3-4):411-5. PubMed ID: 6791703
    [TBL] [Abstract][Full Text] [Related]  

  • 124. A comparison of the metabolism of cis, cis-linoleic, trans, trans-linoleic, and a mixture of cis,trans- and trans,cis-linoleic acids in the rat.
    Coots RH
    J Lipid Res; 1964 Jul; 5(3):473-6. PubMed ID: 5873387
    [No Abstract]   [Full Text] [Related]  

  • 125. Characteristics of beta-carotene-induced inhibition of free radical oxidation of fatty acids with different degree of unsaturation.
    Kozachenko AI; Nagler LG; Gurevich SM; Shumaev KB; Lankin VZ; Belenkov YN
    Dokl Biochem Biophys; 2001; 379():276-8. PubMed ID: 11665681
    [No Abstract]   [Full Text] [Related]  

  • 126. In vivo metabolism of beta-N-oxalyl-L-alpha,beta-diaminopropionic acid: the Lathyrus sativus neurotoxin in experimental animals.
    Jyothi P; Rudra MP; Rao SL
    Nat Toxins; 1998; 6(5):189-95. PubMed ID: 10398516
    [TBL] [Abstract][Full Text] [Related]  

  • 127. Biosynthesis of new divinyl ether oxylipins in Ranunculus plants.
    Hamberg M
    Lipids; 2002 Apr; 37(4):427-33. PubMed ID: 12030324
    [TBL] [Abstract][Full Text] [Related]  

  • 128. Biosynthesis of R-(+)-octane-1,3-diol. Crucial role of beta-oxidation in the enantioselective generation of 1,3-diols in stored apples.
    Beuerle T; Schwab W
    Lipids; 1999 Jun; 34(6):617-25. PubMed ID: 10405976
    [TBL] [Abstract][Full Text] [Related]  

  • 129. Respiration of 14CO2 by intact animals of various species given L-[1-14C]fucose or D-[1-14C]arabinose.
    Metzger RP; Edwards KD; Nixon CC; Mobley PW
    Biochim Biophys Acta; 1980 May; 629(3):482-9. PubMed ID: 6774763
    [TBL] [Abstract][Full Text] [Related]  

  • 130. Distribution, processing and selective esterification of essential fatty acid metabolites in the fetal brain.
    Yavin E; Green P
    World Rev Nutr Diet; 1994; 75():134-8. PubMed ID: 7871815
    [No Abstract]   [Full Text] [Related]  

  • 131. Fermentation and subsequent disposition of 14C-labelled plant cell wall material in the rat.
    Gray DF; Eastwood MA; Brydon WG; Fry SC
    Br J Nutr; 1993 Jan; 69(1):189-97. PubMed ID: 8457526
    [TBL] [Abstract][Full Text] [Related]  

  • 132. Metabolism of [1-14C]linoleic acid in human promyelocytic leukemia HL-60 cells grown and differentiated in serum-free medium.
    Baykousheva S
    Cancer Lett; 1993 Aug; 72(1-2):1-4. PubMed ID: 8402565
    [TBL] [Abstract][Full Text] [Related]  

  • 133. Easy access to various natural keto polyunsaturated fatty acids and their corresponding racemic alcohols.
    Iacazio G
    Chem Phys Lipids; 2003 Oct; 125(2):115-21. PubMed ID: 14499470
    [TBL] [Abstract][Full Text] [Related]  

  • 134. Metabolism and tissue distribution of label from [9,10-methylene-14C]sterculic acid in the rat.
    Nixon JE; Yoss JK; Eisele TA; Pawlowski NE; Sinnhuber RO
    Lipids; 1977 Aug; 12(8):629-34. PubMed ID: 895412
    [No Abstract]   [Full Text] [Related]  

  • 135. Metabolic fates of U-14C-labelled monosaccharides and an enzyme-treated cell-wall substrate in the fowl.
    Savory CJ
    Br J Nutr; 1992 Jan; 67(1):103-14. PubMed ID: 1547197
    [TBL] [Abstract][Full Text] [Related]  

  • 136. Preparation and characterization of a [14C]cellulose suitable for human metabolic studies.
    Walters MP; Kelleher J; Findlay JM; Srinivasan ST
    Br J Nutr; 1989 Jul; 62(1):121-9. PubMed ID: 2551361
    [TBL] [Abstract][Full Text] [Related]  

  • 137. A possible mechanism for the formation of 14CO2 via 2-methoxyacetic acid in mice exposed to 14C-labeled 2-methoxyethanol.
    Sumner SC; Fennell TR
    Toxicol Appl Pharmacol; 1993 May; 120(1):162-4. PubMed ID: 8511778
    [TBL] [Abstract][Full Text] [Related]  

  • 138. Metabolic fate of chlorinated paraffins: degree of chlorination of [1-14C]-chlorododecanes in relation to degradation and excretion in mice.
    Darnerud PO; Biessmann A; Brandt I
    Arch Toxicol; 1982 Sep; 50(3-4):217-26. PubMed ID: 6816191
    [TBL] [Abstract][Full Text] [Related]  

  • 139. DDT: the degradation of ring-labeled 14C-DDT to 14CO2 in the rat.
    Abou-Donia MB; Menzel DB
    Experientia; 1976 Apr; 32(4):500-1. PubMed ID: 1269660
    [TBL] [Abstract][Full Text] [Related]  

  • 140. Metabolism of 6,9,12-octadecatrienoic acid in the red alga Lithothamnion corallioides: mechanism of formation of a conjugated tetraene fatty acid.
    Hamberg M
    Biochem Biophys Res Commun; 1992 Nov; 188(3):1220-7. PubMed ID: 1332713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.