These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 9509746)

  • 21. Telephony-based voice pathology assessment using automated speech analysis.
    Moran RJ; Reilly RB; de Chazal P; Lacy PD
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):468-77. PubMed ID: 16532773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of vocal-fold vibrations from high-speed laryngeal images using a Hilbert transform-based methodology.
    Yan Y; Ahmad K; Kunduk M; Bless D
    J Voice; 2005 Jun; 19(2):161-75. PubMed ID: 15907431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Speaker gender identification based on audio fractal dimension and pitch feature].
    Wang Z; Yang C; Wu W; Fan Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Aug; 25(4):805-10. PubMed ID: 18788284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time series analysis of glottal airflow in normal and pathological phonation.
    Shoji K; Mra Z; Yu JD; Blaugrund SM; Isshiki N
    Laryngoscope; 1992 Oct; 102(10):1118-22. PubMed ID: 1405963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Statistical voice activity detection in kernel space.
    Kim DK; Chang JH
    J Acoust Soc Am; 2012 Oct; 132(4):EL303-9. PubMed ID: 23039569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parameter estimation of an asymmetric vocal-fold system from glottal area time series using chaos synchronization.
    Zhang Y; Tao C; Jiang JJ
    Chaos; 2006 Jun; 16(2):023118. PubMed ID: 16822021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Objective voice analysis in dysphonic patients: new data including nonlinear measurements.
    Yu P; Garrel R; Nicollas R; Ouaknine M; Giovanni A
    Folia Phoniatr Logop; 2007; 59(1):20-30. PubMed ID: 17172783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptive estimation of residue signal for voice pathology diagnosis.
    Rosa Mde O; Pereira JC; Grellet M
    IEEE Trans Biomed Eng; 2000 Jan; 47(1):96-104. PubMed ID: 10646284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automatic tracing of vocal-fold motion from high-speed digital images.
    Yan Y; Chen X; Bless D
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1394-400. PubMed ID: 16830943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Muscle tension dysphonia as a sign of underlying glottal insufficiency.
    Belafsky PC; Postma GN; Reulbach TR; Holland BW; Koufman JA
    Otolaryngol Head Neck Surg; 2002 Nov; 127(5):448-51. PubMed ID: 12447240
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Classification of unilateral vocal fold paralysis by endoscopic digital high-speed recordings and inversion of a biomechanical model.
    Schwarz R; Hoppe U; Schuster M; Wurzbacher T; Eysholdt U; Lohscheller J
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1099-108. PubMed ID: 16761837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adduction arytenopexy: a new procedure for paralytic dysphonia with implications for implant medialization.
    Zeitels SM; Hochman I; Hillman RE
    Ann Otol Rhinol Laryngol Suppl; 1998 Sep; 173():2-24. PubMed ID: 9750545
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of videostrobokymography for the quantitative analysis of laryngeal vibratory pattern.
    Lee JS; Kim E; Park KS; Sung MY; Sung MW; Kim KH
    Stud Health Technol Inform; 1998; 52 Pt 2():1022-4. PubMed ID: 10384614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Outcome of laryngeal manual therapy in four Dutch adults with persistent moderate-to-severe vocal hyperfunction: a pilot study.
    Van Lierde KM; De Ley S; Clement G; De Bodt M; Van Cauwenberge P
    J Voice; 2004 Dec; 18(4):467-74. PubMed ID: 15567048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonlinear vocal fold dynamics resulting from asymmetric fluid loading on a two-mass model of speech.
    Erath BD; Zañartu M; Peterson SD; Plesniak MW
    Chaos; 2011 Sep; 21(3):033113. PubMed ID: 21974648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ceptral voice analysis: link with perception and stroboscopy.
    Dejonckere PH
    Rev Laryngol Otol Rhinol (Bord); 1998; 119(4):245-6. PubMed ID: 9865099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of the progress of therapy in patients with cleft lip, jaw and palate, using voice analysis--a pilot study.
    Gugsch C; Dannhauer KH; Fuchs M
    J Orofac Orthop; 2008 Jul; 69(4):257-67. PubMed ID: 18797830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of impact stress using an aeroelastic model of voice production.
    Horácek J; Laukkanen AM; Sidlof P
    Logoped Phoniatr Vocol; 2007; 32(4):185-92. PubMed ID: 17990190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors.
    Godino-Llorente JI; Gómez-Vilda P
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):380-4. PubMed ID: 14765711
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Voice pathology detection based eon short-term jitter estimations in running speech.
    Vasilakis M; Stylianou Y
    Folia Phoniatr Logop; 2009; 61(3):153-70. PubMed ID: 19571550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.