These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 9509750)

  • 1. Nonlinear system analysis of renal autoregulation in normotensive and hypertensive rats.
    Chon KH; Chen YM; Holstein-Rathlou NH; Marmarelis VZ
    IEEE Trans Biomed Eng; 1998 Mar; 45(3):342-53. PubMed ID: 9509750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-varying properties of renal autoregulatory mechanisms.
    Zou R; Cupples WA; Yip KP; Holstein-Rathlou NH; Chon KH
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1112-20. PubMed ID: 12374335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between TGF-dependent and myogenic oscillations in tubular pressure and whole kidney blood flow in both SDR and SHR.
    Raghavan R; Chen X; Yip KP; Marsh DJ; Chon KH
    Am J Physiol Renal Physiol; 2006 Mar; 290(3):F720-32. PubMed ID: 16219915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of low-frequency oscillations in renal blood flow.
    Siu KL; Sung B; Cupples WA; Moore LC; Chon KH
    Am J Physiol Renal Physiol; 2009 Jul; 297(1):F155-62. PubMed ID: 19420111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaos and non-linear phenomena in renal vascular control.
    Yip KP; Holstein-Rathlou NH
    Cardiovasc Res; 1996 Mar; 31(3):359-70. PubMed ID: 8681323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between nitric oxide and renal myogenic autoregulation in normotensive and hypertensive rats.
    Wang X; Cupples WA
    Can J Physiol Pharmacol; 2001 Mar; 79(3):238-45. PubMed ID: 11294600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the efficacy of linear system analysis of renal autoregulation in rats.
    Chon KH; Chen YM; Holstein-Rathlou NH; Marsh DJ; Marmarelis VZ
    IEEE Trans Biomed Eng; 1993 Jan; 40(1):8-20. PubMed ID: 8468079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of interactions between myogenic and TGF mechanisms using nonlinear analysis.
    Chon KH; Chen YM; Marmarelis VZ; Marsh DJ; Holstein-Rathlou NH
    Am J Physiol; 1994 Jul; 267(1 Pt 2):F160-73. PubMed ID: 8048557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A robust method for detection of linear and nonlinear interactions: application to renal blood flow dynamics.
    Feng L; Siu K; Moore LC; Marsh DJ; Chon KH
    Ann Biomed Eng; 2006 Feb; 34(2):339-53. PubMed ID: 16496083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats.
    Sosnovtseva OV; Pavlov AN; Mosekilde E; Yip KP; Holstein-Rathlou NH; Marsh DJ
    Am J Physiol Renal Physiol; 2007 Nov; 293(5):F1545-55. PubMed ID: 17728377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Autoregulation of kidney circulation, glomerular filtration rate and plasma renin activity in spontaneously hypertensive rats and normotensive Wistar rats].
    Wende P; Strauch M; Unger T; Gretz N; Rohmeiss P
    Med Klin (Munich); 1993 Apr; 88(4):207-11. PubMed ID: 8492775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological modulation of spontaneous renal blood flow dynamics.
    Ajikobi DO; Novak P; Salevsky FC; Cupples WA
    Can J Physiol Pharmacol; 1996 Aug; 74(8):964-72. PubMed ID: 8960387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parameter estimation of feedback gain in a stochastic model of renal hemodynamics: differences between spontaneously hypertensive and Sprague-Dawley rats.
    Ditlevsen S; Yip KP; Marsh DJ; Holstein-Rathlou NH
    Am J Physiol Renal Physiol; 2007 Feb; 292(2):F607-16. PubMed ID: 17018842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing multimode interaction in renal autoregulation.
    Pavlov AN; Sosnovtseva OV; Pavlova ON; Mosekilde E; Holstein-Rathlou NH
    Physiol Meas; 2008 Aug; 29(8):945-58. PubMed ID: 18603665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of TGF-dependent and myogenic oscillations in tubular pressure.
    Chon KH; Raghavan R; Chen YM; Marsh DJ; Yip KP
    Am J Physiol Renal Physiol; 2005 Feb; 288(2):F298-307. PubMed ID: 15479856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of nonstationarity in renal autoregulation mechanisms using time-varying transfer and coherence functions.
    Chon KH; Zhong Y; Moore LC; Holstein-Rathlou NH; Cupples WA
    Am J Physiol Regul Integr Comp Physiol; 2008 Sep; 295(3):R821-8. PubMed ID: 18495831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear analysis of renal autoregulation under broadband forcing conditions.
    Marmarelis VZ; Chon KH; Chen YM; Marsh DJ; Holstein-Rathlou NH
    Ann Biomed Eng; 1993; 21(6):591-603. PubMed ID: 8116912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of dynamics in renal autoregulation using volterra models.
    Hacioğlu R; Williamson GA; Abu-Amarah I; Griffin KA; Bidani AK
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2166-76. PubMed ID: 17073321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide, superoxide and renal blood flow autoregulation in SHR after perinatal L-arginine and antioxidants.
    Koeners MP; Racasan S; Koomans HA; Joles JA; Braam B
    Acta Physiol (Oxf); 2007 Aug; 190(4):329-38. PubMed ID: 17394565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of renal denervation on dynamic autoregulation of renal blood flow.
    DiBona GF; Sawin LL
    Am J Physiol Renal Physiol; 2004 Jun; 286(6):F1209-18. PubMed ID: 14969998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.