These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 9509881)

  • 1. Theoretical estimates of cruciate ligament forces: effects of tibial surface geometry and ligament orientations.
    Imran A; O'Connor JJ
    Proc Inst Mech Eng H; 1997; 211(6):425-39. PubMed ID: 9509881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions.
    Shelburne KB; Pandy MG
    J Biomech; 1997 Feb; 30(2):163-76. PubMed ID: 9001937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of the geometry of the tibia on prediction of the cruciate ligament forces: a theoretical analysis.
    Chan SC; Seedhom BB
    Proc Inst Mech Eng H; 1995; 209(1):17-30. PubMed ID: 7669117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanics of the passive knee joint. Part 2: interaction between the ligaments and the articular surfaces in guiding the joint motion.
    Amiri S; Cooke D; Kim IY; Wyss U
    Proc Inst Mech Eng H; 2007 Nov; 221(8):821-32. PubMed ID: 18161242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changing Sagittal-Plane Landing Styles to Modulate Impact and Tibiofemoral Force Magnitude and Directions Relative to the Tibia.
    Shimokochi Y; Ambegaonkar JP; Meyer EG
    J Athl Train; 2016 Sep; 51(9):669-681. PubMed ID: 27723362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads.
    Sakane M; Fox RJ; Woo SL; Livesay GA; Li G; Fu FH
    J Orthop Res; 1997 Mar; 15(2):285-93. PubMed ID: 9167633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the coupling between anterior and posterior cruciate ligaments, and knee joint response under anterior femoral drawer in flexion: a finite element study.
    Moglo KE; Shirazi-Adl A
    Clin Biomech (Bristol, Avon); 2003 Oct; 18(8):751-9. PubMed ID: 12957562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knee joint mechanics under quadriceps--hamstrings muscle forces are influenced by tibial restraint.
    Mesfar W; Shirazi-Adl A
    Clin Biomech (Bristol, Avon); 2006 Oct; 21(8):841-8. PubMed ID: 16774800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis.
    Beynnon B; Yu J; Huston D; Fleming B; Johnson R; Haugh L; Pope MH
    J Biomech Eng; 1996 May; 118(2):227-39. PubMed ID: 8738789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of cruciate ligament impingement: the influence of femoral or tibial tunnel positioning at different degrees of knee flexion.
    Astur DC; Santos CV; Aleluia V; Astur Neto N; Arliani GG; Kaleka CC; Skaf A; Cohen M
    Arthroscopy; 2013 May; 29(5):913-9. PubMed ID: 23419357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cruciate ligament loading during isometric muscle contractions. A theoretical basis for rehabilitation.
    Zavatsky AB; Beard DJ; O'Connor JJ
    Am J Sports Med; 1994; 22(3):418-23. PubMed ID: 8037285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of stability of the knee and ligament force after implantation of a synthetic anterior cruciate ligament. In vitro measurement.
    More RC; Markolf KL
    J Bone Joint Surg Am; 1988 Aug; 70(7):1020-31. PubMed ID: 3403570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of cruciate-ligament loading on muscle forces and external load.
    Pandy MG; Shelburne KB
    J Biomech; 1997 Oct; 30(10):1015-24. PubMed ID: 9391868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ACL forces and knee kinematics produced by axial tibial compression during a passive flexion-extension cycle.
    Markolf KL; Jackson SR; Foster B; McAllister DR
    J Orthop Res; 2014 Jan; 32(1):89-95. PubMed ID: 23996893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing posterior tibial slope does not raise anterior cruciate ligament strain but decreases tibial rotation ability.
    Nelitz M; Seitz AM; Bauer J; Reichel H; Ignatius A; Dürselen L
    Clin Biomech (Bristol, Avon); 2013 Mar; 28(3):285-90. PubMed ID: 23489478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression.
    Marouane H; Shirazi-Adl A; Adouni M; Hashemi J
    J Biomech; 2014 Apr; 47(6):1353-9. PubMed ID: 24576586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The derivation of knee joint types from the geometry of the cruciate ligament four-bar system.
    Muller M; de Ruijter M
    J Theor Biol; 1998 Aug; 193(3):507-18. PubMed ID: 9735277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanics of the knee joint in flexion under various quadriceps forces.
    Mesfar W; Shirazi-Adl A
    Knee; 2005 Dec; 12(6):424-34. PubMed ID: 15939592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors affecting the region of most isometric femoral attachments. Part II: The anterior cruciate ligament.
    Hefzy MS; Grood ES; Noyes FR
    Am J Sports Med; 1989; 17(2):208-16. PubMed ID: 2667378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligament forces at the knee during isometric quadriceps contractions.
    Zavatsky AB; O'Connor JJ
    Proc Inst Mech Eng H; 1993; 207(1):7-18. PubMed ID: 8363699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.