BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 9510032)

  • 1. Mutations in microphthalmia, the mouse homolog of the human deafness gene MITF, affect neuroepithelial and neural crest-derived melanocytes differently.
    Nakayama A; Nguyen MT; Chen CC; Opdecamp K; Hodgkinson CA; Arnheiter H
    Mech Dev; 1998 Jan; 70(1-2):155-66. PubMed ID: 9510032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor.
    Opdecamp K; Nakayama A; Nguyen MT; Hodgkinson CA; Pavan WJ; Arnheiter H
    Development; 1997 Jun; 124(12):2377-86. PubMed ID: 9199364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signaling and transcriptional regulation in the neural crest-derived melanocyte lineage: interactions between KIT and MITF.
    Hou L; Panthier JJ; Arnheiter H
    Development; 2000 Dec; 127(24):5379-89. PubMed ID: 11076759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microphthalmia transcription factor induces both retinal pigmented epithelium and neural crest melanocytes from neuroretina cells.
    Planque N; Raposo G; Leconte L; Anezo O; Martin P; Saule S
    J Biol Chem; 2004 Oct; 279(40):41911-7. PubMed ID: 15277526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate.
    Lister JA; Robertson CP; Lepage T; Johnson SL; Raible DW
    Development; 1999 Sep; 126(17):3757-67. PubMed ID: 10433906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of SOX10 function in neural crest-derived melanocyte development: SOX10-dependent transcriptional control of dopachrome tautomerase.
    Potterf SB; Mollaaghababa R; Hou L; Southard-Smith EM; Hornyak TJ; Arnheiter H; Pavan WJ
    Dev Biol; 2001 Sep; 237(2):245-57. PubMed ID: 11543611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and developmental expression of Mitf in Xenopus laevis.
    Kumasaka M; Sato H; Sato S; Yajima I; Yamamoto H
    Dev Dyn; 2004 May; 230(1):107-13. PubMed ID: 15108314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of pigment cell-specific gene expression by MITF.
    Shibahara S; Yasumoto K; Amae S; Udono T; Watanabe K; Saito H; Takeda K
    Pigment Cell Res; 2000; 13 Suppl 8():98-102. PubMed ID: 11041365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EMX homeobox genes regulate microphthalmia and alter melanocyte biology.
    Bordogna W; Hudson JD; Buddle J; Bennett DC; Beach DH; Carnero A
    Exp Cell Res; 2005 Nov; 311(1):27-38. PubMed ID: 16197942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient overexpression of the Microphthalmia gene in the eyes of Microphthalmia vitiligo mutant mice.
    Bora N; Conway SJ; Liang H; Smith SB
    Dev Dyn; 1998 Nov; 213(3):283-92. PubMed ID: 9825864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription factors in melanocyte development: distinct roles for Pax-3 and Mitf.
    Hornyak TJ; Hayes DJ; Chiu LY; Ziff EB
    Mech Dev; 2001 Mar; 101(1-2):47-59. PubMed ID: 11231058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence to suggest that expression of MITF induces melanocyte differentiation and haploinsufficiency of MITF causes Waardenburg syndrome type 2A.
    Tachibana M
    Pigment Cell Res; 1997; 10(1-2):25-33. PubMed ID: 9170159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implications of isoform multiplicity of microphthalmia-associated transcription factor in the pathogenesis of auditory-pigmentary syndromes.
    Shibahara S; Yasumoto K; Amae S; Fuse N; Udono T; Takahashi K
    J Investig Dermatol Symp Proc; 1999 Sep; 4(2):101-4. PubMed ID: 10536982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A big gene linked to small eyes encodes multiple Mitf isoforms: many promoters make light work.
    Yasumoto K; Amae S; Udono T; Fuse N; Takeda K; Shibahara S
    Pigment Cell Res; 1998 Dec; 11(6):329-36. PubMed ID: 9870544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of melanogenesis by tetradecanoylphorbol 13-acetate (TPA) in mouse melanocytes and neural crest cells.
    Prince S; Wiggins T; Hulley PA; Kidson SH
    Pigment Cell Res; 2003 Feb; 16(1):26-34. PubMed ID: 12519122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MITF: a stream flowing for pigment cells.
    Tachibana M
    Pigment Cell Res; 2000 Aug; 13(4):230-40. PubMed ID: 10952390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An L1 element intronic insertion in the black-eyed white (Mitf[mi-bw]) gene: the loss of a single Mitf isoform responsible for the pigmentary defect and inner ear deafness.
    Yajima I; Sato S; Kimura T; Yasumoto K; Shibahara S; Goding CR; Yamamoto H
    Hum Mol Genet; 1999 Aug; 8(8):1431-41. PubMed ID: 10400990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular cloning of cDNA encoding a novel microphthalmia-associated transcription factor isoform with a distinct amino-terminus.
    Fuse N; Yasumoto Ki; Takeda K; Amae S; Yoshizawa M; Udono T; Takahashi K; Tamai M; Tomita Y; Tachibana M; Shibahara S
    J Biochem; 1999 Dec; 126(6):1043-51. PubMed ID: 10578055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-autonomous and cell non-autonomous signaling through endothelin receptor B during melanocyte development.
    Hou L; Pavan WJ; Shin MK; Arnheiter H
    Development; 2004 Jul; 131(14):3239-47. PubMed ID: 15201217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival.
    Widlund HR; Fisher DE
    Oncogene; 2003 May; 22(20):3035-41. PubMed ID: 12789278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.