These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9510250)

  • 21. Evidence for multiple mechanisms in human ventricular fibrillation.
    Nash MP; Mourad A; Clayton RH; Sutton PM; Bradley CP; Hayward M; Paterson DJ; Taggart P
    Circulation; 2006 Aug; 114(6):536-42. PubMed ID: 16880326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-organization and the dynamical nature of ventricular fibrillation.
    Jalife J; Gray RA; Morley GE; Davidenko JM
    Chaos; 1998 Mar; 8(1):79-93. PubMed ID: 12779712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of myocardial capture and temporal excitable gap during spiral wave reentry in a bidomain model.
    Ashihara T; Namba T; Ikeda T; Ito M; Nakazawa K; Trayanova N
    Circulation; 2004 Feb; 109(7):920-5. PubMed ID: 14967721
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adenoviral expression of IKs contributes to wavebreak and fibrillatory conduction in neonatal rat ventricular cardiomyocyte monolayers.
    Muñoz V; Grzeda KR; Desplantez T; Pandit SV; Mironov S; Taffet SM; Rohr S; Kléber AG; Jalife J
    Circ Res; 2007 Aug; 101(5):475-83. PubMed ID: 17626898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analyzing the electrophysiological effects of local epicardial temperature in experimental studies with isolated hearts.
    Tormos A; Chorro FJ; Millet J; Such L; Cánoves J; Mainar L; Trapero I; Such-Miquel L; Guill A; Alberola A
    Physiol Meas; 2008 Jul; 29(7):711-28. PubMed ID: 18560056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Whole heart action potential duration restitution properties in cardiac patients: a combined clinical and modelling study.
    Nash MP; Bradley CP; Sutton PM; Clayton RH; Kallis P; Hayward MP; Paterson DJ; Taggart P
    Exp Physiol; 2006 Mar; 91(2):339-54. PubMed ID: 16452121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reentrant arrhythmias and their control in models of mammalian cardiac tissue.
    Biktashev VN; Holden AV
    J Electrocardiol; 1999; 32 Suppl():76-83. PubMed ID: 10688306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of optical and electrical mapping of fibrillation.
    Himel HD; Knisley SB
    Physiol Meas; 2007 Jun; 28(6):707-19. PubMed ID: 17664624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Filament behavior in a computational model of ventricular fibrillation in the canine heart.
    Clayton RH; Holden AV
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):28-34. PubMed ID: 14723491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics and Molecular Mechanisms of Ventricular Fibrillation in Structurally Normal Hearts.
    Jalife J
    Card Electrophysiol Clin; 2016 Sep; 8(3):601-12. PubMed ID: 27521093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ventricular fibrillation interval as an index of ventricular refractoriness: when to catch the fibrillation electrograms?
    Wang L
    Circulation; 1997 Jan; 95(2):531-2. PubMed ID: 9008475
    [No Abstract]   [Full Text] [Related]  

  • 32. Ventricular fibrillation: one spiral or many?
    Evans SJ; Hastings HM; Nangia S; Chin J; Smolow M; Nwasokwa O; Garfinkel A
    Proc Biol Sci; 1998 Nov; 265(1411):2167-70. PubMed ID: 9872005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. STRUCTURAL AND FUNCTIONAL BASES OF CARDIAC FIBRILLATION. DIFFERENCES AND SIMILARITIES BETWEEN ATRIA AND VENTRICLES.
    Filgueiras-Rama D; Jalife J
    JACC Clin Electrophysiol; 2016 Feb; 2(1):1-3. PubMed ID: 27042693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial heterogeneity in refractoriness as a proarrhythmic substrate: theoretical evaluation by numerical simulation.
    Namba T; Ashihara T; Nakazawa K; Ohe T
    Jpn Circ J; 2000 Feb; 64(2):121-9. PubMed ID: 10716526
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Slow Recovery of Excitability Increases Ventricular Fibrillation Risk as Identified by Emulation.
    Lawson BA; Burrage K; Burrage P; Drovandi CC; Bueno-Orovio A
    Front Physiol; 2018; 9():1114. PubMed ID: 30210355
    [No Abstract]   [Full Text] [Related]  

  • 36. Singular Value Decomposition of Optically-Mapped Cardiac Rotors and Fibrillatory Activity.
    Rabinovitch A; Biton Y; Braunstein D; Friedman M; Aviram I; Yandrapalli S; Pandit SV; Berenfeld O
    J Phys D Appl Phys; 2015; 48(9):. PubMed ID: 26668401
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of high frequency stimulation on cardiac tissue with an inexcitable obstacle.
    Panfilov AV; Keener JP
    J Theor Biol; 1993 Aug; 163(4):439-48. PubMed ID: 8246510
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cardiac responses in relation to heart size.
    Johansson BW
    Cryobiology; 1984 Dec; 21(6):627-36. PubMed ID: 6518802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A method to quantify the dynamics and complexity of re-entry in computational models of ventricular fibrillation.
    Clayton RH; Holden AV
    Phys Med Biol; 2002 Jan; 47(2):225-38. PubMed ID: 11837614
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Invasive Optical Pacing in Perfused, Optogenetically Modified Mouse Heart Using Stiff Multi-LED Optical Probes.
    Ayub S; Ruther P; Paul O; Kohl P; Zgierski-Johnston CM
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.