These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 9510384)

  • 1. Dorsal cortical regions subserving visually guided saccades in humans: an fMRI study.
    Luna B; Thulborn KR; Strojwas MH; McCurtain BJ; Berman RA; Genovese CR; Sweeney JA
    Cereb Cortex; 1998; 8(1):40-7. PubMed ID: 9510384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulus-response incompatibility activates cortex proximate to three eye fields.
    Merriam EP; Colby CL; Thulborn KR; Luna B; Olson CR; Sweeney JA
    Neuroimage; 2001 May; 13(5):794-800. PubMed ID: 11304076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Location of the human posterior eye field with functional magnetic resonance imaging.
    Müri RM; Iba-Zizen MT; Derosier C; Cabanis EA; Pierrot-Deseilligny C
    J Neurol Neurosurg Psychiatry; 1996 Apr; 60(4):445-8. PubMed ID: 8774415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional anatomy of pursuit eye movements in humans as revealed by fMRI.
    Petit L; Haxby JV
    J Neurophysiol; 1999 Jul; 82(1):463-71. PubMed ID: 10400972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional magnetic resonance imaging of macaque monkeys performing visually guided saccade tasks: comparison of cortical eye fields with humans.
    Koyama M; Hasegawa I; Osada T; Adachi Y; Nakahara K; Miyashita Y
    Neuron; 2004 Mar; 41(5):795-807. PubMed ID: 15003178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical control of saccades.
    Gaymard B; Ploner CJ; Rivaud S; Vermersch AI; Pierrot-Deseilligny C
    Exp Brain Res; 1998 Nov; 123(1-2):159-63. PubMed ID: 9835405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical control of vestibular-guided saccades in man.
    Israël I; Rivaud S; Gaymard B; Berthoz A; Pierrot-Deseilligny C
    Brain; 1995 Oct; 118 ( Pt 5)():1169-83. PubMed ID: 7496778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corticocortical input to the smooth and saccadic eye movement subregions of the frontal eye field in Cebus monkeys.
    Tian JR; Lynch JC
    J Neurophysiol; 1996 Oct; 76(4):2754-71. PubMed ID: 8899643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of frontoparietal cortices during memorized triple-step sequences of saccadic eye movements: an fMRI study.
    Heide W; Binkofski F; Seitz RJ; Posse S; Nitschke MF; Freund HJ; Kömpf D
    Eur J Neurosci; 2001 Mar; 13(6):1177-89. PubMed ID: 11285015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical activation patterns during voluntary blinks and voluntary saccades.
    Bodis-Wollner I; Bucher SF; Seelos KC
    Neurology; 1999 Nov; 53(8):1800-5. PubMed ID: 10563631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human precentral cortical activation patterns during saccade tasks: an fMRI comparison with activation during intentional eyeblink tasks.
    Kato M; Miyauchi S
    Neuroimage; 2003 Aug; 19(4):1260-72. PubMed ID: 12948687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human cortical regions activated by wide-field visual motion: an H2(15)O PET study.
    Cheng K; Fujita H; Kanno I; Miura S; Tanaka K
    J Neurophysiol; 1995 Jul; 74(1):413-27. PubMed ID: 7472342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical networks subserving pursuit and saccadic eye movements in humans: an FMRI study.
    Berman RA; Colby CL; Genovese CR; Voyvodic JT; Luna B; Thulborn KR; Sweeney JA
    Hum Brain Mapp; 1999; 8(4):209-25. PubMed ID: 10619415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parietal Cortex Integrates Saccade and Object Orientation Signals to Update Grasp Plans.
    Baltaretu BR; Monaco S; Velji-Ibrahim J; Luabeya GN; Crawford JD
    J Neurosci; 2020 Jun; 40(23):4525-4535. PubMed ID: 32354854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frontoparietal activation with preparation for antisaccades.
    Brown MR; Vilis T; Everling S
    J Neurophysiol; 2007 Sep; 98(3):1751-62. PubMed ID: 17596416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing.
    Connolly JD; Goodale MA; DeSouza JF; Menon RS; Vilis T
    J Neurophysiol; 2000 Sep; 84(3):1645-55. PubMed ID: 10980034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical activation in the human brain during lateral saccades using EPISTAR functional magnetic resonance imaging.
    Darby DG; Nobre AC; Thangaraj V; Edelman R; Mesulam MM; Warach S
    Neuroimage; 1996 Feb; 3(1):53-62. PubMed ID: 9345475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential cortical activation during voluntary and reflexive saccades in man.
    Mort DJ; Perry RJ; Mannan SK; Hodgson TL; Anderson E; Quest R; McRobbie D; McBride A; Husain M; Kennard C
    Neuroimage; 2003 Feb; 18(2):231-46. PubMed ID: 12595178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects.
    Kimmig H; Greenlee MW; Gondan M; Schira M; Kassubek J; Mergner T
    Exp Brain Res; 2001 Nov; 141(2):184-94. PubMed ID: 11713630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.