These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 9510384)

  • 21. Topographic organization for delayed saccades in human posterior parietal cortex.
    Schluppeck D; Glimcher P; Heeger DJ
    J Neurophysiol; 2005 Aug; 94(2):1372-84. PubMed ID: 15817644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI.
    Petit L; Clark VP; Ingeholm J; Haxby JV
    J Neurophysiol; 1997 Jun; 77(6):3386-90. PubMed ID: 9212283
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specificity of human cortical areas for reaches and saccades.
    Levy I; Schluppeck D; Heeger DJ; Glimcher PW
    J Neurosci; 2007 Apr; 27(17):4687-96. PubMed ID: 17460081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cortical functional anatomy of voluntary saccades in Parkinson disease.
    Rieger JW; Kim A; Argyelan M; Farber M; Glazman S; Liebeskind M; Meyer T; Bodis-Wollner I
    Clin EEG Neurosci; 2008 Oct; 39(4):169-74. PubMed ID: 19044213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation of saccade inhibition processes: rapid event-related fMRI of saccades and nogo trials.
    Brown MR; Vilis T; Everling S
    Neuroimage; 2008 Jan; 39(2):793-804. PubMed ID: 17977025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Eye-movement training-induced plasticity in patients with post-stroke hemianopia.
    Nelles G; Pscherer A; de Greiff A; Forsting M; Gerhard H; Esser J; Diener HC
    J Neurol; 2009 May; 256(5):726-33. PubMed ID: 19240963
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distribution of activity across the monkey cerebral cortical surface, thalamus and midbrain during rapid, visually guided saccades.
    Baker JT; Patel GH; Corbetta M; Snyder LH
    Cereb Cortex; 2006 Apr; 16(4):447-59. PubMed ID: 15958778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field.
    Burman DD; Bruce CJ
    J Neurophysiol; 1997 May; 77(5):2252-67. PubMed ID: 9163356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An effect of context on saccade-related behavior and brain activity.
    Dyckman KA; Camchong J; Clementz BA; McDowell JE
    Neuroimage; 2007 Jul; 36(3):774-84. PubMed ID: 17478104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Topography of projections to posterior cortical areas from the macaque frontal eye fields.
    Stanton GB; Bruce CJ; Goldberg ME
    J Comp Neurol; 1995 Mar; 353(2):291-305. PubMed ID: 7745137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-dimensional spatial tuning for saccades in human parieto-frontal cortex.
    Leoné FT; Toni I; Medendorp WP
    Neuroimage; 2014 Feb; 87():476-89. PubMed ID: 24099846
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional MRI mapping of brain activation during visually guided saccades and antisaccades: cortical and subcortical networks.
    Matsuda T; Matsuura M; Ohkubo T; Ohkubo H; Matsushima E; Inoue K; Taira M; Kojima T
    Psychiatry Res; 2004 Jul; 131(2):147-55. PubMed ID: 15313521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of memory- and visually guided saccades using event-related fMRI.
    Brown MR; DeSouza JF; Goltz HC; Ford K; Menon RS; Goodale MA; Everling S
    J Neurophysiol; 2004 Feb; 91(2):873-89. PubMed ID: 14523078
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades.
    Dias EC; Segraves MA
    J Neurophysiol; 1999 May; 81(5):2191-214. PubMed ID: 10322059
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: comparison with supplementary eye fields.
    Schall JD
    J Neurophysiol; 1991 Aug; 66(2):559-79. PubMed ID: 1774586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effector specificity in macaque frontal and parietal cortex.
    Premereur E; Janssen P; Vanduffel W
    J Neurosci; 2015 Feb; 35(8):3446-59. PubMed ID: 25716844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule.
    Andersen RA; Asanuma C; Essick G; Siegel RM
    J Comp Neurol; 1990 Jun; 296(1):65-113. PubMed ID: 2358530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distributed representations of the "preparatory set" in the frontal oculomotor system: a TMS study.
    Nagel M; Sprenger A; Lencer R; Kömpf D; Siebner H; Heide W
    BMC Neurosci; 2008 Sep; 9():89. PubMed ID: 18801205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Individual variation in the location of the parietal eye fields: a TMS study.
    Ryan S; Bonilha L; Jackson SR
    Exp Brain Res; 2006 Aug; 173(3):389-94. PubMed ID: 16506006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An anatomical landmark for the supplementary eye fields in human revealed with functional magnetic resonance imaging.
    Grosbras MH; Lobel E; Van de Moortele PF; LeBihan D; Berthoz A
    Cereb Cortex; 1999; 9(7):705-11. PubMed ID: 10554993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.