These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 9511473)

  • 1. Determination of L-phenylalanine based on an NADH-detecting biosensor.
    Huang T; Warsinke A; Kuwana T; Scheller FW
    Anal Chem; 1998 Mar; 70(5):991-7. PubMed ID: 9511473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of thiols with tyrosinase-modified carbon paste electrodes based on blocking of substrate recycling.
    Huang TH; Kuwana T; Warsinke A
    Biosens Bioelectron; 2002 Dec; 17(11-12):1107-13. PubMed ID: 12392962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new enzyme electrode for quantification of salicylic acid in a FIA system.
    Martín C; Domínguez E
    J Pharm Biomed Anal; 1999 Feb; 19(1-2):107-13. PubMed ID: 10698572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a bienzyme system for the electrochemical determination of nitrate in ambient air.
    Cui Y; Barford JP; Renneberg R
    Anal Bioanal Chem; 2006 Nov; 386(5):1567-70. PubMed ID: 16900381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An amperometric bi-enzyme sensor for determination of formate using cofactor regeneration.
    Mak KK; Wollenberger U; Scheller FW; Renneberg R
    Biosens Bioelectron; 2003 Aug; 18(9):1095-100. PubMed ID: 12788551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocatalytic detection of NADH and glycerol by NAD(+)-modified carbon electrodes.
    Alvarez-González MI; Saidman SB; Lobo-Castañón MJ; Miranda-Ordieres AJ; Tuñón-Blanco P
    Anal Chem; 2000 Feb; 72(3):520-7. PubMed ID: 10695137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Kinetic and Analytical Aspects of Enzyme Competitive Inhibition: Sensing of Tyrosinase Inhibitors.
    Attaallah R; Amine A
    Biosensors (Basel); 2021 Sep; 11(9):. PubMed ID: 34562912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A catechol biosensor based on a gold nanoparticles encapsulated-dendrimer.
    Singh RP
    Analyst; 2011 Mar; 136(6):1216-21. PubMed ID: 21240422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sensitive H
    Huang X; Zhang J; Zhang L; Su H; Liu X; Liu J
    Anal Biochem; 2020 Jan; 589():113493. PubMed ID: 31682794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of methyl salicylate using bi-enzyme electrochemical sensor consisting salicylate hydroxylase and tyrosinase.
    Fang Y; Bullock H; Lee SA; Sekar N; Eiteman MA; Whitman WB; Ramasamy RP
    Biosens Bioelectron; 2016 Nov; 85():603-610. PubMed ID: 27236726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tyrosinase biosensor based on ordered mesoporous carbon-Au/L-lysine/Au nanoparticles for simultaneous determination of hydroquinone and catechol.
    Tang L; Zhou Y; Zeng G; Li Z; Liu Y; Zhang Y; Chen G; Yang G; Lei X; Wu M
    Analyst; 2013 Jun; 138(12):3552-60. PubMed ID: 23671910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microcapsule-based biosensor containing catechol for the reagent-free inhibitive detection of benzoic acid by tyrosinase.
    Nedellec Y; Gondran C; Gorgy K; Mc Murtry S; Agostini P; Elmazria O; Cosnier S
    Biosens Bioelectron; 2021 May; 180():113137. PubMed ID: 33690099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dehydrogenase based reagentless biosensor for monitoring phenylketonuria.
    Weiss DJ; Dorris M; Loh A; Peterson L
    Biosens Bioelectron; 2007 May; 22(11):2436-41. PubMed ID: 17029777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low potential detection of NADH based on Fe₃O₄ nanoparticles/multiwalled carbon nanotubes composite: fabrication of integrated dehydrogenase-based lactate biosensor.
    Teymourian H; Salimi A; Hallaj R
    Biosens Bioelectron; 2012 Mar; 33(1):60-8. PubMed ID: 22230696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocatalytic oxidation of NADH at electrogenerated NAD+ oxidation product immobilized onto multiwalled carbon nanotubes/ionic liquid nanocomposite: application to ethanol biosensing.
    Teymourian H; Salimi A; Hallaj R
    Talanta; 2012 Feb; 90():91-8. PubMed ID: 22340121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical biosensor for catechol using agarose-guar gum entrapped tyrosinase.
    Tembe S; Inamdar S; Haram S; Karve M; D'Souza SF
    J Biotechnol; 2007 Jan; 128(1):80-5. PubMed ID: 17113674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of salicylate in blood serum by flow injection with immobilized salicylate hydroxylase.
    Vila MM; Tubino M; de Oliveira Neto G
    J AOAC Int; 2001; 84(5):1363-9. PubMed ID: 11601455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosensor for rapid determination of 3-hydroxybutyrate using bi-enzyme system.
    Kwan RC; Hon PY; Mak WC; Law LY; Hu J; Renneberg R
    Biosens Bioelectron; 2006 Jan; 21(7):1101-6. PubMed ID: 15886000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular-mediated immobilization of L-phenylalanine dehydrogenase on cyclodextrin-coated Au electrodes for biosensor applications.
    Villalonga R; Fujii A; Shinohara H; Asano Y; Cao R; Tachibana S; Ortiz P
    Biotechnol Lett; 2007 Mar; 29(3):447-52. PubMed ID: 17237972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biosensor based on gold nanoparticles, dihexadecylphosphate, and tyrosinase for the determination of catechol in natural water.
    Campanhã Vicentini F; Garcia LL; Figueiredo-Filho LC; Janegitz BC; Fatibello-Filho O
    Enzyme Microb Technol; 2016 Mar; 84():17-23. PubMed ID: 26827770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.