These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 9511826)
1. Killing mechanism of Listeria monocytogenes in activated macrophages as determined by an improved assay system. Ohya S; Xiong H; Tanabe Y; Arakawa M; Mitsuyama M J Med Microbiol; 1998 Mar; 47(3):211-5. PubMed ID: 9511826 [TBL] [Abstract][Full Text] [Related]
2. Intracellular killing of Listeria monocytogenes in the J774.1 macrophage-like cell line and the lipopolysaccharide (LPS)-resistant mutant LPS1916 cell line defective in the generation of reactive oxygen intermediates after LPS treatment. Inoue S; Itagaki S; Amano F Infect Immun; 1995 May; 63(5):1876-86. PubMed ID: 7729897 [TBL] [Abstract][Full Text] [Related]
3. Differential mechanisms of intracellular killing of Mycobacterium avium and Listeria monocytogenes by activated human and murine macrophages. The role of nitric oxide. Bermudez LE Clin Exp Immunol; 1993 Feb; 91(2):277-81. PubMed ID: 8428392 [TBL] [Abstract][Full Text] [Related]
4. Arginine-dependent generation of reactive nitrogen intermediates is instrumental in the in vitro killing of protoscoleces of Echinococcus multilocularis by activated macrophages. Kanazawa T; Asahi H; Hata H; Mochida K; Kagei N; Stadecker MJ Parasite Immunol; 1993 Nov; 15(11):619-23. PubMed ID: 7877838 [TBL] [Abstract][Full Text] [Related]
6. Differences in the rate of intracellular killing of catalase-negative and catalase-positive Listeria monocytogenes by normal and interferon-gamma-activated macrophages. van Dissel JT; Stikkelbroeck JJ; van Furth R Scand J Immunol; 1993 Apr; 37(4):443-6. PubMed ID: 8469926 [TBL] [Abstract][Full Text] [Related]
7. Absence of complement receptor 3 results in reduced binding and ingestion of Mycobacterium tuberculosis but has no significant effect on the induction of reactive oxygen and nitrogen intermediates or on the survival of the bacteria in resident and interferon-gamma activated macrophages. Rooyakkers AW; Stokes RW Microb Pathog; 2005 Sep; 39(3):57-67. PubMed ID: 16084683 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of the intracellular killing and modulation of antibiotic susceptibility of Listeria monocytogenes in THP-1 macrophages activated by gamma interferon. Ouadrhiri Y; Scorneaux B; Sibille Y; Tulkens PM Antimicrob Agents Chemother; 1999 May; 43(5):1242-51. PubMed ID: 10223943 [TBL] [Abstract][Full Text] [Related]
9. Inability of recombinant interferon-gamma to activate the antibacterial activity of mouse peritoneal macrophages against Listeria monocytogenes and Salmonella typhimurium. van Dissel JT; Stikkelbroeck JJ; Michel BC; van den Barselaar MT; Leijh PC; van Furth R J Immunol; 1987 Sep; 139(5):1673-8. PubMed ID: 2957433 [TBL] [Abstract][Full Text] [Related]
10. Cellular pharmacokinetics and intracellular activity against Listeria monocytogenes and Staphylococcus aureus of chemically modified and nanoencapsulated gentamicin. Imbuluzqueta E; Lemaire S; Gamazo C; Elizondo E; Ventosa N; Veciana J; Van Bambeke F; Blanco-Prieto MJ J Antimicrob Chemother; 2012 Sep; 67(9):2158-64. PubMed ID: 22615297 [TBL] [Abstract][Full Text] [Related]
11. Effect of macrophage activation on killing of Listeria monocytogenes. Roles of reactive oxygen or nitrogen intermediates, rate of phagocytosis, and retention of bacteria in endosomes. Higginbotham JN; Lin TL; Pruett SB Clin Exp Immunol; 1992 Jun; 88(3):492-8. PubMed ID: 1606735 [TBL] [Abstract][Full Text] [Related]
12. TNF-alpha and IFN-gamma stimulate a macrophage precursor cell line to kill Listeria monocytogenes in a nitric oxide-independent manner. Leenen PJ; Canono BP; Drevets DA; Voerman JS; Campbell PA J Immunol; 1994 Dec; 153(11):5141-7. PubMed ID: 7525724 [TBL] [Abstract][Full Text] [Related]
13. Role of reactive nitrogen and oxygen intermediates in gamma interferon-stimulated murine macrophage bactericidal activity against Burkholderia pseudomallei. Miyagi K; Kawakami K; Saito A Infect Immun; 1997 Oct; 65(10):4108-13. PubMed ID: 9317015 [TBL] [Abstract][Full Text] [Related]
14. Macrophage-induced inhibition of nitric oxide production in primary rat hepatocyte cultures via prostaglandin E2 release. Griffon B; Cillard J; Chevanne M; Morel I; Cillard P; Sergent O Hepatology; 1998 Nov; 28(5):1300-8. PubMed ID: 9794915 [TBL] [Abstract][Full Text] [Related]
15. The microbicidal activity of interferon-gamma-treated macrophages against Trypanosoma cruzi involves an L-arginine-dependent, nitrogen oxide-mediated mechanism inhibitable by interleukin-10 and transforming growth factor-beta. Gazzinelli RT; Oswald IP; Hieny S; James SL; Sher A Eur J Immunol; 1992 Oct; 22(10):2501-6. PubMed ID: 1396957 [TBL] [Abstract][Full Text] [Related]
16. Comparison of control of Listeria by nitric oxide redox chemistry from murine macrophages and NO donors: insights into listeriocidal activity of oxidative and nitrosative stress. Ogawa R; Pacelli R; Espey MG; Miranda KM; Friedman N; Kim SM; Cox G; Mitchell JB; Wink DA; Russo A Free Radic Biol Med; 2001 Feb; 30(3):268-76. PubMed ID: 11165873 [TBL] [Abstract][Full Text] [Related]
17. Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism. Green SJ; Meltzer MS; Hibbs JB; Nacy CA J Immunol; 1990 Jan; 144(1):278-83. PubMed ID: 2104889 [TBL] [Abstract][Full Text] [Related]
18. Altered membrane trafficking in activated bone marrow-derived macrophages. Tsang AW; Oestergaard K; Myers JT; Swanson JA J Leukoc Biol; 2000 Oct; 68(4):487-94. PubMed ID: 11037969 [TBL] [Abstract][Full Text] [Related]
19. Tumor necrosis factor, alone or in combination with IL-2, but not IFN-gamma, is associated with macrophage killing of Mycobacterium avium complex. Bermudez LE; Young LS J Immunol; 1988 May; 140(9):3006-13. PubMed ID: 2834450 [TBL] [Abstract][Full Text] [Related]
20. Involvement of reactive oxygen intermediate in the enhanced expression of virulence-associated genes of Listeria monocytogenes inside activated macrophages. Makino M; Kawai M; Kawamura I; Fujita M; Gejo F; Mitsuyama M Microbiol Immunol; 2005; 49(8):805-11. PubMed ID: 16113511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]