These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 9511935)

  • 1. Modeling of nucleotide binding domains of ABC transporter proteins based on a F1-ATPase/recA topology: structural model of the nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator (CFTR).
    Bianchet MA; Ko YH; Amzel LM; Pedersen PL
    J Bioenerg Biomembr; 1997 Oct; 29(5):503-24. PubMed ID: 9511935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building an understanding of cystic fibrosis on the foundation of ABC transporter structures.
    Mendoza JL; Thomas PJ
    J Bioenerg Biomembr; 2007 Dec; 39(5-6):499-505. PubMed ID: 18080175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps.
    Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL
    J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insight into cystic fibrosis by structural modelling of CFTR first nucleotide binding fold (NBF1).
    Annereau JP; Stoven V; Bontems F; Barthe J; Lenoir G; Blanquet S; Lallemand JY
    C R Acad Sci III; 1997 Feb; 320(2):113-21. PubMed ID: 9181119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model for the nucleotide-binding domains of ABC transporters based on the large domain of aspartate aminotransferase.
    Hoedemaeker FJ; Davidson AR; Rose DR
    Proteins; 1998 Feb; 30(3):275-86. PubMed ID: 9517543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters.
    Jordan IK; Kota KC; Cui G; Thompson CH; McCarty NA
    Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18865-70. PubMed ID: 19020075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substitution of Yor1p NBD1 residues improves the thermal stability of Human Cystic Fibrosis Transmembrane Conductance Regulator.
    Xavier BM; Hildebrandt E; Jiang F; Ding H; Kappes JC; Urbatsch IL
    Protein Eng Des Sel; 2017 Oct; 30(10):729-741. PubMed ID: 29053845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Walker B motif of the second nucleotide-binding domain (NBD2) of CFTR plays a key role in ATPase activity by the NBD1-NBD2 heterodimer.
    Stratford FL; Ramjeesingh M; Cheung JC; Huan LJ; Bear CE
    Biochem J; 2007 Jan; 401(2):581-6. PubMed ID: 16989640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cystic fibrosis transmembrane conductance regulator: the NBF1+R (nucleotide-binding fold 1 and regulatory domain) segment acting alone catalyses a Co2+/Mn2+/Mg2+-ATPase activity markedly inhibited by both Cd2+ and the transition-state analogue orthovanadate.
    Annereau JP; Ko YH; Pedersen PL
    Biochem J; 2003 Apr; 371(Pt 2):451-62. PubMed ID: 12523935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cystic fibrosis transmembrane conductance regulator. Nucleotide binding to a synthetic peptide segment from the second predicted nucleotide binding fold.
    Ko YH; Thomas PJ; Pedersen PL
    J Biol Chem; 1994 May; 269(20):14584-8. PubMed ID: 7514174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular models of the open and closed states of the whole human CFTR protein.
    Mornon JP; Lehn P; Callebaut I
    Cell Mol Life Sci; 2009 Nov; 66(21):3469-86. PubMed ID: 19707853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel model for the first nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator.
    Annereau JP; Wulbrand U; Vankeerberghen A; Cuppens H; Bontems F; Tümmler B; Cassiman JJ; Stoven V
    FEBS Lett; 1997 May; 407(3):303-8. PubMed ID: 9175873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator, an ABC transporter, catalyze adenylate kinase activity but not ATP hydrolysis.
    Gross CH; Abdul-Manan N; Fulghum J; Lippke J; Liu X; Prabhakar P; Brennan D; Willis MS; Faerman C; Connelly P; Raybuck S; Moore J
    J Biol Chem; 2006 Feb; 281(7):4058-68. PubMed ID: 16361259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin and evolution of the cystic fibrosis transmembrane regulator protein R domain.
    Sebastian A; Rishishwar L; Wang J; Bernard KF; Conley AB; McCarty NA; Jordan IK
    Gene; 2013 Jul; 523(2):137-46. PubMed ID: 23578801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential function of the two nucleotide binding domains on cystic fibrosis transmembrane conductance regulator.
    Nagel G
    Biochim Biophys Acta; 1999 Dec; 1461(2):263-74. PubMed ID: 10581360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator.
    Lewis HA; Buchanan SG; Burley SK; Conners K; Dickey M; Dorwart M; Fowler R; Gao X; Guggino WB; Hendrickson WA; Hunt JF; Kearins MC; Lorimer D; Maloney PC; Post KW; Rajashankar KR; Rutter ME; Sauder JM; Shriver S; Thibodeau PH; Thomas PJ; Zhang M; Zhao X; Emtage S
    EMBO J; 2004 Jan; 23(2):282-93. PubMed ID: 14685259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of the C-terminal boundary of the second nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator and structural implications.
    Gentzsch M; Aleksandrov A; Aleksandrov L; Riordan JR
    Biochem J; 2002 Sep; 366(Pt 2):541-8. PubMed ID: 12020354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations in the nucleotide binding domain 1 signature motif region rescue processing and functional defects of cystic fibrosis transmembrane conductance regulator delta f508.
    DeCarvalho AC; Gansheroff LJ; Teem JL
    J Biol Chem; 2002 Sep; 277(39):35896-905. PubMed ID: 12110684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP-Dependent Signaling in Simulations of a Revised Model of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).
    Strickland KM; Stock G; Cui G; Hwang H; Infield DT; Schmidt-Krey I; McCarty NA; Gumbart JC
    J Phys Chem B; 2019 Apr; 123(15):3177-3188. PubMed ID: 30921517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR): CLOSED AND OPEN STATE CHANNEL MODELS.
    Corradi V; Vergani P; Tieleman DP
    J Biol Chem; 2015 Sep; 290(38):22891-906. PubMed ID: 26229102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.