These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Thermodynamic model of secondary structure for alpha-helical peptides and proteins. Lomize AL; Mosberg HI Biopolymers; 1997 Aug; 42(2):239-69. PubMed ID: 9235002 [TBL] [Abstract][Full Text] [Related]
4. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins. Avbelj F J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873 [TBL] [Abstract][Full Text] [Related]
5. The occurrence of C--H...O hydrogen bonds in alpha-helices and helix termini in globular proteins. Manikandan K; Ramakumar S Proteins; 2004 Sep; 56(4):768-81. PubMed ID: 15281129 [TBL] [Abstract][Full Text] [Related]
6. Structural cassette mutagenesis in a de novo designed protein: proof of a novel concept for examining protein folding and stability. Kwok SC; Tripet B; Man JH; Chana MS; Lavigne P; Mant CT; Hodges RS Biopolymers; 1998; 47(1):101-23. PubMed ID: 9692331 [TBL] [Abstract][Full Text] [Related]
7. Lattice models for proteins reveal multiple folding nuclei for nucleation-collapse mechanism. Klimov DK; Thirumalai D J Mol Biol; 1998 Sep; 282(2):471-92. PubMed ID: 9735420 [TBL] [Abstract][Full Text] [Related]
8. Conformational features of a hexapeptide model Ac-TGAAKA-NH2 corresponding to a hydrated alpha helical segment from glyceraldehyde 3-phosphate dehydrogenase: implications for the role of turns in helix folding. Sasidhar YU; Ramakrishna V Indian J Biochem Biophys; 2000 Feb; 37(1):34-44. PubMed ID: 10983411 [TBL] [Abstract][Full Text] [Related]
9. Elucidating the folding problem of alpha-helices: local motifs, long-range electrostatics, ionic-strength dependence and prediction of NMR parameters. Lacroix E; Viguera AR; Serrano L J Mol Biol; 1998 Nov; 284(1):173-91. PubMed ID: 9811549 [TBL] [Abstract][Full Text] [Related]
10. Alpha-helix stabilization by alanine relative to glycine: roles of polar and apolar solvent exposures and of backbone entropy. López-Llano J; Campos LA; Sancho J Proteins; 2006 Aug; 64(3):769-78. PubMed ID: 16755589 [TBL] [Abstract][Full Text] [Related]
11. Intersegment interactions and helix-coil transition within the generalized model of polypeptide chains approach. Badasyan AV; Hayrapetyan GN; Tonoyan ShA; Mamasakhlisov YSh; Benight AS; Morozov VF J Chem Phys; 2009 Sep; 131(11):115104. PubMed ID: 19778153 [TBL] [Abstract][Full Text] [Related]
12. Parameters of helix-coil transition theory for alanine-based peptides of varying chain lengths in water. Scholtz JM; Qian H; York EJ; Stewart JM; Baldwin RL Biopolymers; 1991 Nov; 31(13):1463-70. PubMed ID: 1814498 [TBL] [Abstract][Full Text] [Related]
13. Two peptide fragments G55-I72 and K97-A109 from staphylococcal nuclease exhibit different behaviors in conformational preferences for helix formation. Wang M; Shan L; Wang J Biopolymers; 2006 Oct; 83(3):268-79. PubMed ID: 16767771 [TBL] [Abstract][Full Text] [Related]
14. Addition of side chain interactions to modified Lifson-Roig helix-coil theory: application to energetics of phenylalanine-methionine interactions. Stapley BJ; Rohl CA; Doig AJ Protein Sci; 1995 Nov; 4(11):2383-91. PubMed ID: 8563636 [TBL] [Abstract][Full Text] [Related]
16. Helix-coil transition of alanine peptides in water: force field dependence on the folded and unfolded structures. Gnanakaran S; García AE Proteins; 2005 Jun; 59(4):773-82. PubMed ID: 15815975 [TBL] [Abstract][Full Text] [Related]
17. Direct computation of long time processes in peptides and proteins: reaction path study of the coil-to-helix transition in polyalanine. Huo S; Straub JE Proteins; 1999 Aug; 36(2):249-61. PubMed ID: 10398371 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamic parameters of helix-random coil transitions in polypeptide chains. IV. Random copolymers of L-alanine with L-glutamic acid. Bychkova VE; Ptitsyn OB Mol Biol (Mosk); 1976; 10(4):756-61. PubMed ID: 15214 [TBL] [Abstract][Full Text] [Related]
19. Helix nucleation kinetics from molecular simulations in explicit solvent. Hummer G; García AE; Garde S Proteins; 2001 Jan; 42(1):77-84. PubMed ID: 11093262 [TBL] [Abstract][Full Text] [Related]
20. Role of main-chain electrostatics, hydrophobic effect and side-chain conformational entropy in determining the secondary structure of proteins. Avbelj F; Fele L J Mol Biol; 1998 Jun; 279(3):665-84. PubMed ID: 9641985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]