These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 9512019)

  • 1. Using experimental information to produce a model of the transmembrane domain of the ion channel phospholamban.
    Herzyk P; Hubbard RE
    Biophys J; 1998 Mar; 74(3):1203-14. PubMed ID: 9512019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the 1-36 amino-terminal fragment of human phospholamban by nuclear magnetic resonance and modeling of the phospholamban pentamer.
    Pollesello P; Annila A; Ovaska M
    Biophys J; 1999 Apr; 76(4):1784-95. PubMed ID: 10096878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural organization of the pentameric transmembrane alpha-helices of phospholamban, a cardiac ion channel.
    Arkin IT; Adams PD; MacKenzie KR; Lemmon MA; Brünger AT; Engelman DM
    EMBO J; 1994 Oct; 13(20):4757-64. PubMed ID: 7525269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural model of the phospholamban ion channel complex in phospholipid membranes.
    Arkin IT; Rothman M; Ludlam CF; Aimoto S; Engelman DM; Rothschild KJ; Smith SO
    J Mol Biol; 1995 May; 248(4):824-34. PubMed ID: 7752243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The X-ray structure of the GCN4-bZIP bound to ATF/CREB site DNA shows the complex depends on DNA flexibility.
    König P; Richmond TJ
    J Mol Biol; 1993 Sep; 233(1):139-54. PubMed ID: 8377181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A leucine zipper stabilizes the pentameric membrane domain of phospholamban and forms a coiled-coil pore structure.
    Simmerman HK; Kobayashi YM; Autry JM; Jones LR
    J Biol Chem; 1996 Mar; 271(10):5941-6. PubMed ID: 8621468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of a new label, (13)==(18)O, in the determination of a structural model of phospholamban in a lipid bilayer. Spatial restraints resolve the ambiguity arising from interpretations of mutagenesis data.
    Torres J; Adams PD; Arkin IT
    J Mol Biol; 2000 Jul; 300(4):677-85. PubMed ID: 10891262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligomerization properties of GCN4 leucine zipper e and g position mutants.
    Zeng X; Zhu H; Lashuel HA; Hu JC
    Protein Sci; 1997 Oct; 6(10):2218-26. PubMed ID: 9336844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban.
    Adams PD; Arkin IT; Engelman DM; Brünger AT
    Nat Struct Biol; 1995 Feb; 2(2):154-62. PubMed ID: 7749920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel helix bundles and ion channels: molecular modeling via simulated annealing and restrained molecular dynamics.
    Kerr ID; Sankararamakrishnan R; Smart OS; Sansom MS
    Biophys J; 1994 Oct; 67(4):1501-15. PubMed ID: 7529585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Models for the transmembrane region of the phospholamban pentamer: which is correct?
    Adams PD; Lee AS; Brünger AT; Engelman DM
    Ann N Y Acad Sci; 1998 Sep; 853():178-85. PubMed ID: 10603945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural perspectives of phospholamban, a helical transmembrane pentamer.
    Arkin IT; Adams PD; Brünger AT; Smith SO; Engelman DM
    Annu Rev Biophys Biomol Struct; 1997; 26():157-79. PubMed ID: 9241417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple method for modeling transmembrane helix oligomers.
    Kim S; Chamberlain AK; Bowie JU
    J Mol Biol; 2003 Jun; 329(4):831-40. PubMed ID: 12787681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmembrane four-helix bundle of influenza A M2 protein channel: structural implications from helix tilt and orientation.
    Kovacs FA; Cross TA
    Biophys J; 1997 Nov; 73(5):2511-7. PubMed ID: 9370444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trimerization specificity in HIV-1 gp41: analysis with a GCN4 leucine zipper model.
    Shu W; Ji H; Lu M
    Biochemistry; 1999 Apr; 38(17):5378-85. PubMed ID: 10220324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution structure and orientation of the transmembrane anchor domain of the HIV-1-encoded virus protein U by high-resolution and solid-state NMR spectroscopy.
    Wray V; Kinder R; Federau T; Henklein P; Bechinger B; Schubert U
    Biochemistry; 1999 Apr; 38(16):5272-82. PubMed ID: 10213635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Helix capping in the GCN4 leucine zipper.
    Lu M; Shu W; Ji H; Spek E; Wang L; Kallenbach NR
    J Mol Biol; 1999 May; 288(4):743-52. PubMed ID: 10329176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of the folding pathways and structure of the GCN4 leucine zipper.
    Vieth M; Kolinski A; Brooks CL; Skolnick J
    J Mol Biol; 1994 Apr; 237(4):361-7. PubMed ID: 8151697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the roles of residues at the e and g positions of the GCN4 leucine zipper by combinatorial mutagenesis.
    Hu JC; Newell NE; Tidor B; Sauer RT
    Protein Sci; 1993 Jul; 2(7):1072-84. PubMed ID: 8102921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the amino-terminal coiled-coil domain of the APC tumor suppressor.
    Day CL; Alber T
    J Mol Biol; 2000 Aug; 301(1):147-56. PubMed ID: 10926498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.