BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 9512023)

  • 1. Molecular modeling of the enantioselectivity in lipase-catalyzed transesterification reactions.
    Haeffner F; Norin T; Hult K
    Biophys J; 1998 Mar; 74(3):1251-62. PubMed ID: 9512023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselectivity in Candida antarctica lipase B: a molecular dynamics study.
    Raza S; Fransson L; Hult K
    Protein Sci; 2001 Feb; 10(2):329-38. PubMed ID: 11266619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular modeling and its experimental verification for the catalytic mechanism of Candida antarctica lipase B.
    Kwon HC; Shin DY; Lee JH; Kim SW; Kang JW
    J Microbiol Biotechnol; 2007 Jul; 17(7):1098-105. PubMed ID: 18051319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of enantioselectivity of lipase catalyzed kinetic resolution using umbrella sampling.
    Mathpati AC; Bhanage BM
    J Biotechnol; 2018 Oct; 283():70-80. PubMed ID: 30031094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A water molecule in the stereospecificity pocket of Candida antarctica lipase B enhances enantioselectivity towards pentan-2-ol.
    Léonard V; Fransson L; Lamare S; Hult K; Graber M
    Chembiochem; 2007 Apr; 8(6):662-7. PubMed ID: 17328021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structural basis for enantioselective inhibition of Candida rugosa lipase by long-chain aliphatic alcohols.
    Holmquist M; Haeffner F; Norin T; Hult K
    Protein Sci; 1996 Jan; 5(1):83-8. PubMed ID: 8771199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols.
    Uppenberg J; Ohrner N; Norin M; Hult K; Kleywegt GJ; Patkar S; Waagen V; Anthonsen T; Jones TA
    Biochemistry; 1995 Dec; 34(51):16838-51. PubMed ID: 8527460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate entropy in enzyme enantioselectivity: an experimental and molecular modeling study of a lipase.
    Ottosson J; Fransson L; Hult K
    Protein Sci; 2002 Jun; 11(6):1462-71. PubMed ID: 12021445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of delta-functional groups on the enantiorecognition of secondary alcohols by Candida antarctica lipase B.
    Nyhlén J; Martín-Matute B; Sandström AG; Bocola M; Bäckvall JE
    Chembiochem; 2008 Aug; 9(12):1968-74. PubMed ID: 18655082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of absolute configuration of secondary alcohols using lipase-catalyzed kinetic resolutions.
    Jing Q; Kazlauskas RJ
    Chirality; 2008 May; 20(5):724-35. PubMed ID: 18278808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer modeling of substrate binding to lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa.
    Norin M; Haeffner F; Achour A; Norin T; Hult K
    Protein Sci; 1994 Sep; 3(9):1493-503. PubMed ID: 7833809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved enantioselectivity of a lipase by rational protein engineering.
    Rotticci D; Rotticci-Mulder JC; Denman S; Norin T; Hult K
    Chembiochem; 2001 Oct; 2(10):766-70. PubMed ID: 11948859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmentally friendly, efficient resolution of racemic secondary alcohols by lipase-catalyzed enantioselective transesterification in ionic liquids in the presence of organic bases.
    Wu XM; Xin JY; Sun W; Xia CG
    Chem Biodivers; 2007 Feb; 4(2):183-8. PubMed ID: 17311231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5-[4-(1-Hydroxyethyl)phenyl]-10,15,20-triphenylporphyrin as a probe of the transition-state conformation in hydrolase-catalyzed enantioselective transesterifications.
    Ema T; Jittani M; Furuie K; Utaka M; Sakai T
    J Org Chem; 2002 Apr; 67(7):2144-51. PubMed ID: 11925221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutant lipase-catalyzed kinetic resolution of bulky phenyl alkyl sec-alcohols: a thermodynamic analysis of enantioselectivity.
    Vallin M; Syrén PO; Hult K
    Chembiochem; 2010 Feb; 11(3):411-6. PubMed ID: 20049759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen-bonding-driven enantioselective resolution against the Kazlauskas rule to afford γ-amino alcohols by Candida rugosa lipase.
    Min B; Park J; Sim YK; Jung S; Kim SH; Song JK; Kim BT; Park SY; Yun J; Park S; Lee H
    Chembiochem; 2015 Jan; 16(1):77-82. PubMed ID: 25477295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the impact of water on the enantioselectivity displayed by CALB in the kinetic resolution of δ-functionalized alkan-2-ol derivatives.
    Yang B; Lihammar R; Bäckvall JE
    Chemistry; 2014 Oct; 20(42):13517-21. PubMed ID: 25195930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning from directed evolution: theoretical investigations into cooperative mutations in lipase enantioselectivity.
    Bocola M; Otte N; Jaeger KE; Reetz MT; Thiel W
    Chembiochem; 2004 Feb; 5(2):214-23. PubMed ID: 14760743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An inverse substrate orientation for the regioselective acylation of 3',5'-diaminonucleosides catalyzed by Candida antarctica lipase B?
    Lavandera I; Fernández S; Magdalena J; Ferrero M; Kazlauskas RJ; Gotor V
    Chembiochem; 2005 Aug; 6(8):1381-90. PubMed ID: 15977272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic resolution of (R,S)-2-butanol using enzymatic synthesis of esters.
    Romero MD; Gomez JM; Diaz-Suelto B; Garcia-Sanz A; Baster N
    Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1129-40. PubMed ID: 21837379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.