BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 9512029)

  • 21. Molecular determinants of Au(CN)(2)(-) binding and permeability within the cystic fibrosis transmembrane conductance regulator Cl(-) channel pore.
    Gong X; Burbridge SM; Cowley EA; Linsdell P
    J Physiol; 2002 Apr; 540(Pt 1):39-47. PubMed ID: 11927667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of proline residues in the membrane-spanning domains of cystic fibrosis transmembrane conductance regulator to chloride channel function.
    Sheppard DN; Travis SM; Ishihara H; Welsh MJ
    J Biol Chem; 1996 Jun; 271(25):14995-5001. PubMed ID: 8663008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of a region of strong discrimination in the pore of CFTR.
    McCarty NA; Zhang ZR
    Am J Physiol Lung Cell Mol Physiol; 2001 Oct; 281(4):L852-67. PubMed ID: 11557589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutations at arginine 352 alter the pore architecture of CFTR.
    Cui G; Zhang ZR; O'Brien AR; Song B; McCarty NA
    J Membr Biol; 2008 Mar; 222(2):91-106. PubMed ID: 18421494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CFTR: covalent and noncovalent modification suggests a role for fixed charges in anion conduction.
    Smith SS; Liu X; Zhang ZR; Sun F; Kriewall TE; McCarty NA; Dawson DC
    J Gen Physiol; 2001 Oct; 118(4):407-31. PubMed ID: 11585852
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CFTR: mechanism of anion conduction.
    Dawson DC; Smith SS; Mansoura MK
    Physiol Rev; 1999 Jan; 79(1 Suppl):S47-75. PubMed ID: 9922376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genistein improves regulatory interactions between G551D-cystic fibrosis transmembrane conductance regulator and the epithelial sodium channel in Xenopus oocytes.
    Suaud L; Carattino M; Kleyman TR; Rubenstein RC
    J Biol Chem; 2002 Dec; 277(52):50341-7. PubMed ID: 12386156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional integrity of the vesicle transporting machinery is required for complete activation of cFTR expressed in xenopus laevis oocytes.
    Weber WM; Segal A; Simaels J; Vankeerberghen A; Cassiman JJ; Van Driessche W
    Pflugers Arch; 2001 Mar; 441(6):850-9. PubMed ID: 11316271
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A functional CFTR-NBF1 is required for ROMK2-CFTR interaction.
    McNicholas CM; Nason MW; Guggino WB; Schwiebert EM; Hebert SC; Giebisch G; Egan ME
    Am J Physiol; 1997 Nov; 273(5):F843-8. PubMed ID: 9374850
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.
    Csanády L; Chan KW; Nairn AC; Gadsby DC
    J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CFTR: what's it like inside the pore?
    Liu X; Smith SS; Dawson DC
    J Exp Zool A Comp Exp Biol; 2003 Nov; 300(1):69-75. PubMed ID: 14598388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C.
    Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR
    Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contribution of a leucine residue in the first transmembrane segment to the selectivity filter region in the CFTR chloride channel.
    Negoda A; El Hiani Y; Cowley EA; Linsdell P
    Biochim Biophys Acta Biomembr; 2017 May; 1859(5):1049-1058. PubMed ID: 28235470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A conserved region of the R domain of cystic fibrosis transmembrane conductance regulator is important in processing and function.
    Pasyk EA; Morin XK; Zeman P; Garami E; Galley K; Huan LJ; Wang Y; Bear CE
    J Biol Chem; 1998 Nov; 273(48):31759-64. PubMed ID: 9822639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanosensitive activation of CFTR by increased cell volume and hydrostatic pressure but not shear stress.
    Vitzthum C; Clauss WG; Fronius M
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2942-51. PubMed ID: 26357939
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CFTR: Ligand exchange between a permeant anion ([Au(CN)2]-) and an engineered cysteine (T338C) blocks the pore.
    Serrano JR; Liu X; Borg ER; Alexander CS; Shaw CF; Dawson DC
    Biophys J; 2006 Sep; 91(5):1737-48. PubMed ID: 16766608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The two halves of CFTR form a dual-pore ion channel.
    Yue H; Devidas S; Guggino WB
    J Biol Chem; 2000 Apr; 275(14):10030-4. PubMed ID: 10744680
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CFTR: a cysteine at position 338 in TM6 senses a positive electrostatic potential in the pore.
    Liu X; Zhang ZR; Fuller MD; Billingsley J; McCarty NA; Dawson DC
    Biophys J; 2004 Dec; 87(6):3826-41. PubMed ID: 15361410
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-ion pore behaviour in the CFTR chloride channel.
    Tabcharani JA; Rommens JM; Hou YX; Chang XB; Tsui LC; Riordan JR; Hanrahan JW
    Nature; 1993 Nov; 366(6450):79-82. PubMed ID: 7694154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ABC1, an ATP binding cassette transporter required for phagocytosis of apoptotic cells, generates a regulated anion flux after expression in Xenopus laevis oocytes.
    Becq F; Hamon Y; Bajetto A; Gola M; Verrier B; Chimini G
    J Biol Chem; 1997 Jan; 272(5):2695-9. PubMed ID: 9006906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.