BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 9512039)

  • 1. Effect of viscosity on mechanics of single, skinned fibers from rabbit psoas muscle.
    Chase PB; Denkinger TM; Kushmerick MJ
    Biophys J; 1998 Mar; 74(3):1428-38. PubMed ID: 9512039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-bridge attachment during high-speed active shortening of skinned fibers of the rabbit psoas muscle: implications for cross-bridge action during maximum velocity of filament sliding.
    Stehle R; Brenner B
    Biophys J; 2000 Mar; 78(3):1458-73. PubMed ID: 10692331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple model with myofilament compliance predicts activation-dependent crossbridge kinetics in skinned skeletal fibers.
    Martyn DA; Chase PB; Regnier M; Gordon AM
    Biophys J; 2002 Dec; 83(6):3425-34. PubMed ID: 12496109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sliding distance per ATP molecule hydrolyzed by myosin heads during isotonic shortening of skinned muscle fibers.
    Higuchi H; Goldman YE
    Biophys J; 1995 Oct; 69(4):1491-507. PubMed ID: 8534820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of phosphate and ADP on shortening velocity during maximal and submaximal calcium activation of the thin filament in skeletal muscle fibers.
    Metzger JM
    Biophys J; 1996 Jan; 70(1):409-17. PubMed ID: 8770217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of thin filament activation probed by fluorescence of N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole-labeled troponin I incorporated into skinned fibers of rabbit psoas muscle: implications for regulation of muscle contraction.
    Brenner B; Chalovich JM
    Biophys J; 1999 Nov; 77(5):2692-708. PubMed ID: 10545369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for increased low force cross-bridge population in shortening skinned skeletal muscle fibers: implications for actomyosin kinetics.
    Iwamoto H
    Biophys J; 1995 Sep; 69(3):1022-35. PubMed ID: 8519957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thin filament cooperativity as a major determinant of shortening velocity in skeletal muscle fibers.
    Iwamoto H
    Biophys J; 1998 Mar; 74(3):1452-64. PubMed ID: 9512041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force enhancement without changes in cross-bridge turnover kinetics: the effect of EMD 57033.
    Kraft T; Brenner B
    Biophys J; 1997 Jan; 72(1):272-81. PubMed ID: 8994612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thin filament activation and unloaded shortening velocity of rabbit skinned muscle fibres.
    Morris CA; Tobacman LS; Homsher E
    J Physiol; 2003 Jul; 550(Pt 1):205-15. PubMed ID: 12730342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Faster force transient kinetics at submaximal Ca2+ activation of skinned psoas fibers from rabbit.
    Martyn DA; Chase PB
    Biophys J; 1995 Jan; 68(1):235-42. PubMed ID: 7711246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The force-length relationship of mechanically isolated sarcomeres.
    Herzog W; Joumaa V; Leonard TR
    Adv Exp Med Biol; 2010; 682():141-61. PubMed ID: 20824524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-bridge binding to actin and force generation in skinned fibers of the rabbit psoas muscle in the presence of antibody fragments against the N-terminus of actin.
    Brenner B; Kraft T; DasGupta G; Reisler E
    Biophys J; 1996 Jan; 70(1):48-56. PubMed ID: 8770186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel inhibition of active force and relaxed fiber stiffness by caldesmon fragments at physiological ionic strength and temperature conditions: additional evidence that weak cross-bridge binding to actin is an essential intermediate for force generation.
    Kraft T; Chalovich JM; Yu LC; Brenner B
    Biophys J; 1995 Jun; 68(6):2404-18. PubMed ID: 7647245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of ATP analogs on posthydrolytic and force development steps in skinned skeletal muscle fibers.
    Regnier M; Homsher E
    Biophys J; 1998 Jun; 74(6):3059-71. PubMed ID: 9635760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of inorganic phosphate on the force and number of myosin cross-bridges during the isometric contraction of permeabilized muscle fibers from rabbit psoas.
    Caremani M; Dantzig J; Goldman YE; Lombardi V; Linari M
    Biophys J; 2008 Dec; 95(12):5798-808. PubMed ID: 18835889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear myofilament regulatory processes affect frequency-dependent muscle fiber stiffness.
    Campbell KB; Razumova MV; Kirkpatrick RD; Slinker BK
    Biophys J; 2001 Oct; 81(4):2278-96. PubMed ID: 11566798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructure of skeletal muscle fibers studied by a plunge quick freezing method: myofilament lengths.
    Sosa H; Popp D; Ouyang G; Huxley HE
    Biophys J; 1994 Jul; 67(1):283-92. PubMed ID: 7918996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compliance of thin filaments in skinned fibers of rabbit skeletal muscle.
    Higuchi H; Yanagida T; Goldman YE
    Biophys J; 1995 Sep; 69(3):1000-10. PubMed ID: 8519955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring.
    Wang K; McCarter R; Wright J; Beverly J; Ramirez-Mitchell R
    Biophys J; 1993 Apr; 64(4):1161-77. PubMed ID: 8494977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.