These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 9512053)

  • 1. Mitochondrial calcium in relaxed and tetanized myocardium.
    Horikawa Y; Goel A; Somlyo AP; Somlyo AV
    Biophys J; 1998 Mar; 74(3):1579-90. PubMed ID: 9512053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium is released from the junctional sarcoplasmic reticulum during cardiac muscle contraction.
    Moravec CS; Bond M
    Am J Physiol; 1991 Mar; 260(3 Pt 2):H989-97. PubMed ID: 2000992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of inotropic stimulation on mitochondrial calcium in cardiac muscle.
    Moravec CS; Bond M
    J Biol Chem; 1992 Mar; 267(8):5310-6. PubMed ID: 1544913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of subcellular Ca2+ redistribution in cardiac muscle in situ: time resolved rapid freezing and electron probe microanalysis.
    Bond M; Schluchter MD; Keller E; Moravec CS
    Scanning Microsc Suppl; 1994; 8():1-11. PubMed ID: 7638476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Twitch-potentiation increases calcium in peripheral more than in central mitochondria of guinea-pig ventricular myocytes.
    Gallitelli MF; Schultz M; Isenberg G; Rudolf F
    J Physiol; 1999 Jul; 518 ( Pt 2)(Pt 2):433-47. PubMed ID: 10381590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between contractile force and intracellular [Ca2+] in intact rat cardiac trabeculae.
    Backx PH; Gao WD; Azan-Backx MD; Marban E
    J Gen Physiol; 1995 Jan; 105(1):1-19. PubMed ID: 7730787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total and free myoplasmic calcium during a contraction cycle: x-ray microanalysis in guinea-pig ventricular myocytes.
    Wendt-Gallitelli MF; Isenberg G
    J Physiol; 1991 Apr; 435():349-72. PubMed ID: 1770441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of calcium on mitochondrial NAD(P)H in paced rat ventricular myocytes.
    White RL; Wittenberg BA
    Biophys J; 1995 Dec; 69(6):2790-9. PubMed ID: 8599685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between force and intracellular [Ca2+] in tetanized mammalian heart muscle.
    Yue DT; Marban E; Wier WG
    J Gen Physiol; 1986 Feb; 87(2):223-42. PubMed ID: 2419483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radial mass transfer of cross-bridges in a tetanized ferret heart muscle.
    Yagi N; Saeki Y; Kiyota H; Kurihara S
    Pflugers Arch; 2002 May; 444(1-2):38-42. PubMed ID: 11976914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presystolic calcium-loading of the sarcoplasmic reticulum influences time to peak force of contraction. X-ray microanalysis on rapidly frozen guinea-pig ventricular muscle preparations.
    Wendt-Gallitelli MF
    Basic Res Cardiol; 1985; 80(6):617-25. PubMed ID: 4091778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial calcium content in isolated perfused heart: effects of inotropic stimulation.
    Moravec CS; Desnoyer RW; Milovanovic M; Schluchter MD; Bond M
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1432-9. PubMed ID: 9321835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in mitochondrial calcium concentration during the cardiac contraction cycle.
    Isenberg G; Han S; Schiefer A; Wendt-Gallitelli MF
    Cardiovasc Res; 1993 Oct; 27(10):1800-9. PubMed ID: 8275527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximal Ca2+-activated force elicited by tetanization of ferret papillary muscle and whole heart: mechanism and characteristics of steady contractile activation in intact myocardium.
    Marban E; Kusuoka H; Yue DT; Weisfeldt ML; Wier WG
    Circ Res; 1986 Sep; 59(3):262-9. PubMed ID: 2429779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activator calcium and myocardial contractility in fetal sheep exposed to long-term high-altitude hypoxia.
    Browne VA; Stiffel VM; Pearce WJ; Longo LD; Gilbert RD
    Am J Physiol; 1997 Mar; 272(3 Pt 2):H1196-204. PubMed ID: 9087593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of acidosis on Ca2+ sensitivity of contractile elements in intact ferret myocardium.
    Komukai K; Ishikawa T; Kurihara S
    Am J Physiol; 1998 Jan; 274(1):H147-54. PubMed ID: 9458863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positive inotropic effect of ryanodine on rabbit ventricular muscle: dependence on the intracellular calcium load.
    Gainullin RZ; Saxon ME
    Gen Physiol Biophys; 1989 Dec; 8(6):555-68. PubMed ID: 2612868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of aging on the control of contractile force by Na(+)-Ca2+ exchange in rat papillary muscle.
    Abete P; Ferrara N; Cioppa A; Ferrara P; Bianco S; Calabrese C; Napoli C; Rengo F
    J Gerontol A Biol Sci Med Sci; 1996 Sep; 51(5):M251-9. PubMed ID: 8808998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered subcellular Ca2+ regulation in papillary muscles from cardiomyopathic hamster hearts.
    Keller E; Moravec CS; Bond M
    Am J Physiol; 1995 May; 268(5 Pt 2):H1875-83. PubMed ID: 7539590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of stimulation rate, sarcomere length and Ca(2+) on force generation by mouse cardiac muscle.
    Stuyvers BD; McCulloch AD; Guo J; Duff HJ; ter Keurs HE
    J Physiol; 2002 Nov; 544(3):817-30. PubMed ID: 12411526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.