BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9512341)

  • 1. Transgene expression in Xenopus rods.
    Knox BE; Schlueter C; Sanger BM; Green CB; Besharse JC
    FEBS Lett; 1998 Feb; 423(2):117-21. PubMed ID: 9512341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of kinesin II function using a dominant negative-acting transgene in Xenopus laevis rods results in photoreceptor degeneration.
    Lin-Jones J; Parker E; Wu M; Knox BE; Burnside B
    Invest Ophthalmol Vis Sci; 2003 Aug; 44(8):3614-21. PubMed ID: 12882815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.
    Perkins BD; Kainz PM; O'Malley DM; Dowling JE
    Vis Neurosci; 2002; 19(4):257R-264R. PubMed ID: 12511087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.
    Perkins BD; Kainz PM; O'Malley DM; Dowling JE
    Vis Neurosci; 2002; 19(3):257-64. PubMed ID: 12392175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The regulation of retina specific expression of rhodopsin gene in vertebrates.
    Zhang T; Tan YH; Fu J; Lui D; Ning Y; Jirik FR; Brenner S; Venkatesh B
    Gene; 2003 Aug; 313():189-200. PubMed ID: 12957390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern.
    Moritz OL; Tam BM; Papermaster DS; Nakayama T
    J Biol Chem; 2001 Jul; 276(30):28242-51. PubMed ID: 11350960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved rhodopsin/EGFP fusion protein for use in the generation of transgenic Xenopus laevis.
    Jin S; McKee TD; Oprian DD
    FEBS Lett; 2003 May; 542(1-3):142-6. PubMed ID: 12729914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xenopus laevis red cone opsin and Prph2 promoters allow transgene expression in amphibian cones, or both rods and cones.
    Moritz OL; Peck A; Tam BM
    Gene; 2002 Oct; 298(2):173-82. PubMed ID: 12426105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression patterns of zebrafish
    Yang X; Fu J; Wei X
    Mol Vis; 2017; 23():1039-1047. PubMed ID: 29386877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human blue-opsin promoter preferentially targets reporter gene expression to rat s-cone photoreceptors.
    Glushakova LG; Timmers AM; Pang J; Teusner JT; Hauswirth WW
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3505-13. PubMed ID: 16877422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a rod photoreceptor mosaic revealed in transgenic zebrafish.
    Fadool JM
    Dev Biol; 2003 Jun; 258(2):277-90. PubMed ID: 12798288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pineal expression-promoting element (PIPE), a cis-acting element, directs pineal-specific gene expression in zebrafish.
    Asaoka Y; Mano H; Kojima D; Fukada Y
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15456-61. PubMed ID: 12438694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cone survival despite rod degeneration in XOPS-mCFP transgenic zebrafish.
    Morris AC; Schroeter EH; Bilotta J; Wong RO; Fadool JM
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4762-71. PubMed ID: 16303977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deciphering the contribution of known cis-elements in the mouse cone arrestin gene to its cone-specific expression.
    Pickrell SW; Zhu X; Wang X; Craft CM
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):3877-84. PubMed ID: 15505032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodopsin promoter-EGFP fusion transgene expression in photoreceptor neurons of retina and pineal complex in mice.
    Ichsan AM; Kato I; Yoshida T; Takasawa K; Hayasaka S; Hiraga K
    Neurosci Lett; 2005 May; 379(2):138-43. PubMed ID: 15823431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct modulation of rod photoreceptor responsiveness through a Mel(1c) melatonin receptor in transgenic Xenopus laevis retina.
    Wiechmann AF; Vrieze MJ; Dighe R; Hu Y
    Invest Ophthalmol Vis Sci; 2003 Oct; 44(10):4522-31. PubMed ID: 14507901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does recombinant adeno-associated virus-vectored proximal region of mouse rhodopsin promoter support only rod-type specific expression in vivo?
    Glushakova LG; Timmers AM; Issa TM; Cortez NG; Pang J; Teusner JT; Hauswirth WW
    Mol Vis; 2006 Apr; 12():298-309. PubMed ID: 16617297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GFAP promoter drives Müller cell-specific expression in transgenic mice.
    Kuzmanovic M; Dudley VJ; Sarthy VP
    Invest Ophthalmol Vis Sci; 2003 Aug; 44(8):3606-13. PubMed ID: 12882814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xenopus rhodopsin promoter. Identification of immediate upstream sequences necessary for high level, rod-specific transcription.
    Mani SS; Batni S; Whitaker L; Chen S; Engbretson G; Knox BE
    J Biol Chem; 2001 Sep; 276(39):36557-65. PubMed ID: 11333267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of rod photoreceptor development using GFP-transgenic zebrafish.
    Hamaoka T; Takechi M; Chinen A; Nishiwaki Y; Kawamura S
    Genesis; 2002 Nov; 34(3):215-20. PubMed ID: 12395387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.