These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 9512349)

  • 41. Visual pigments of the platypus: a novel route to mammalian colour vision.
    Davies WL; Carvalho LS; Cowing JA; Beazley LD; Hunt DM; Arrese CA
    Curr Biol; 2007 Mar; 17(5):R161-3. PubMed ID: 17339011
    [No Abstract]   [Full Text] [Related]  

  • 42. Molecular cloning of the salamander red and blue cone visual pigments.
    Xu L; Hazard ES; Lockman DK; Crouch RK; Ma J
    Mol Vis; 1998 Jul; 4():10. PubMed ID: 9675215
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The molecular evolution of visual pigments of freshwater crayfishes (Decapoda: Cambaridae).
    Crandall KA; Cronin TW
    J Mol Evol; 1997 Nov; 45(5):524-34. PubMed ID: 9342400
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phylogenetic analysis and experimental approaches to study color vision in vertebrates.
    Yokoyama S
    Methods Enzymol; 2000; 315():312-25. PubMed ID: 10736710
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visual pigments of African cichlid fishes: evidence for ultraviolet vision from microspectrophotometry and DNA sequences.
    Carleton KL; Hárosi FI; Kocher TD
    Vision Res; 2000; 40(8):879-90. PubMed ID: 10720660
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Short wavelength-sensitive opsins from the Saharan silver and carpenter ants.
    Smith WC; Ayers DM; Popp MP; Hargrave PA
    Invert Neurosci; 1997 Jun; 3(1):49-56. PubMed ID: 9706701
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Parallel evolution of opsin visual pigments in hawkmoths by tuning of spectral sensitivities during transition from a nocturnal to a diurnal ecology.
    Akiyama T; Uchiyama H; Yajima S; Arikawa K; Terai Y
    J Exp Biol; 2022 Dec; 225(23):. PubMed ID: 36408938
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel rod-like opsin isolated from the extra-retinal photoreceptors of teleost fish.
    Philp AR; Bellingham J; Garcia-Fernandez J; Foster RG
    FEBS Lett; 2000 Feb; 468(2-3):181-8. PubMed ID: 10692583
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sequence divergence of the red and green visual pigments in great apes and humans.
    Deeb SS; Jorgensen AL; Battisti L; Iwasaki L; Motulsky AG
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7262-6. PubMed ID: 8041777
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterisation of the ultraviolet-sensitive opsin gene in the honey bee, Apis mellifera.
    Bellingham J; Wilkie SE; Morris AG; Bowmaker JK; Hunt DM
    Eur J Biochem; 1997 Feb; 243(3):775-81. PubMed ID: 9057845
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cloning and expression of a Xenopus short wavelength cone pigment.
    Starace DM; Knox BE
    Exp Eye Res; 1998 Aug; 67(2):209-20. PubMed ID: 9733587
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spectral tuning in vertebrate short wavelength-sensitive 1 (SWS1) visual pigments: can wavelength sensitivity be inferred from sequence data?
    Hauser FE; van Hazel I; Chang BS
    J Exp Zool B Mol Dev Evol; 2014 Nov; 322(7):529-39. PubMed ID: 24890094
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates.
    Hunt DM; Cowing JA; Wilkie SE; Parry JW; Poopalasundaram S; Bowmaker JK
    Photochem Photobiol Sci; 2004 Aug; 3(8):713-20. PubMed ID: 15295625
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The rod opsin pigments from two marsupial species, the South American bare-tailed woolly opossum and the Australian fat-tailed dunnart.
    Hunt DM; Arrese CA; von Dornum M; Rodger J; Oddy A; Cowing JA; Ager EI; Bowmaker JK; Beazley LD; Shand J
    Gene; 2003 Dec; 323():157-62. PubMed ID: 14659889
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular evolution of color vision of zebra finch.
    Yokoyama S; Blow NS; Radlwimmer FB
    Gene; 2000 Dec; 259(1-2):17-24. PubMed ID: 11163957
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments.
    Kuwayama S; Imai H; Morizumi T; Shichida Y
    Biochemistry; 2005 Feb; 44(6):2208-15. PubMed ID: 15697246
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change.
    Yokoyama S; Radlwimmer FB; Blow NS
    Proc Natl Acad Sci U S A; 2000 Jun; 97(13):7366-71. PubMed ID: 10861005
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spectral tuning of shortwave-sensitive visual pigments in vertebrates.
    Hunt DM; Carvalho LS; Cowing JA; Parry JW; Wilkie SE; Davies WL; Bowmaker JK
    Photochem Photobiol; 2007; 83(2):303-10. PubMed ID: 17576346
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Honeybee blue- and ultraviolet-sensitive opsins: cloning, heterologous expression in Drosophila, and physiological characterization.
    Townson SM; Chang BS; Salcedo E; Chadwell LV; Pierce NE; Britt SG
    J Neurosci; 1998 Apr; 18(7):2412-22. PubMed ID: 9502802
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Generation of knock-in mice carrying third cones with spectral sensitivity different from S and L cones.
    Onishi A; Hasegawa J; Imai H; Chisaka O; Ueda Y; Honda Y; Tachibana M; Shichida Y
    Zoolog Sci; 2005 Oct; 22(10):1145-56. PubMed ID: 16286727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.