These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 9512349)

  • 61. Molecular evolution of vertebrate visual pigments.
    Yokoyama S
    Prog Retin Eye Res; 2000 Jul; 19(4):385-419. PubMed ID: 10785616
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Origin and adaptation of green-sensitive (RH2) pigments in vertebrates.
    Yokoyama S; Jia H
    FEBS Open Bio; 2020 May; 10(5):873-882. PubMed ID: 32189477
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A novel and ancient vertebrate opsin.
    Soni BG; Foster RG
    FEBS Lett; 1997 Apr; 406(3):279-83. PubMed ID: 9136902
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Six opsins from the butterfly Papilio glaucus: molecular phylogenetic evidence for paralogous origins of red-sensitive visual pigments in insects.
    Briscoe AD
    J Mol Evol; 2000 Aug; 51(2):110-21. PubMed ID: 10948267
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Identification of the Cl(-)-binding site in the human red and green color vision pigments.
    Wang Z; Asenjo AB; Oprian DD
    Biochemistry; 1993 Mar; 32(9):2125-30. PubMed ID: 8443153
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The opsins of the vertebrate retina: insights from structural, biochemical, and evolutionary studies.
    Nickle B; Robinson PR
    Cell Mol Life Sci; 2007 Nov; 64(22):2917-32. PubMed ID: 17726575
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Spectral tuning of ultraviolet cone pigments: an interhelical lock mechanism.
    Sekharan S; Mooney VL; Rivalta I; Kazmi MA; Neitz M; Neitz J; Sakmar TP; Yan EC; Batista VS
    J Am Chem Soc; 2013 Dec; 135(51):19064-7. PubMed ID: 24295328
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sequence divergence and copy number of the middle- and long-wave photopigment genes in Old World monkeys.
    Ibbotson RE; Hunt DM; Bowmaker JK; Mollon JD
    Proc Biol Sci; 1992 Feb; 247(1319):145-54. PubMed ID: 1349182
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Absorbance spectra and molecular structure of the blue-sensitive rod visual pigment in the conger eel (Conger conger).
    Archer S; Hirano J
    Proc Biol Sci; 1996 Jun; 263(1371):761-7. PubMed ID: 8763796
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The molecular basis for spectral tuning of rod visual pigments in deep-sea fish.
    Hunt DM; Dulai KS; Partridge JC; Cottrill P; Bowmaker JK
    J Exp Biol; 2001 Oct; 204(Pt 19):3333-44. PubMed ID: 11606607
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The primary structure of iodopsin, a chicken red-sensitive cone pigment.
    Kuwata O; Imamoto Y; Okano T; Kokame K; Kojima D; Matsumoto H; Morodome A; Fukada Y; Shichida Y; Yasuda K
    FEBS Lett; 1990 Oct; 272(1-2):128-32. PubMed ID: 2226824
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Spectral tuning of the long wavelength-sensitive cone pigment in four Australian marsupials.
    Arrese CA; Beazley LD; Ferguson MC; Oddy A; Hunt DM
    Gene; 2006 Oct; 381():13-7. PubMed ID: 16859843
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Non-rod, non-cone photoreception in rodents and teleost fish.
    Foster RG; Hankins M; Lucas RJ; Jenkins A; Muñoz M; Thompson S; Appleford JM; Bellingham J
    Novartis Found Symp; 2003; 253():3-23; discussion 23-30, 52-5, 102-9. PubMed ID: 14712912
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Evolutionary replacement of UV vision by violet vision in fish.
    Tada T; Altun A; Yokoyama S
    Proc Natl Acad Sci U S A; 2009 Oct; 106(41):17457-62. PubMed ID: 19805066
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Evolution of dim-light and color vision pigments.
    Yokoyama S
    Annu Rev Genomics Hum Genet; 2008; 9():259-82. PubMed ID: 18544031
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The spectral tuning in the short wavelength-sensitive type 2 pigments.
    Yokoyama S; Tada T
    Gene; 2003 Mar; 306():91-8. PubMed ID: 12657470
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cone visual pigments in two species of South American marsupials.
    Hunt DM; Chan J; Carvalho LS; Hokoc JN; Ferguson MC; Arrese CA; Beazley LD
    Gene; 2009 Mar; 433(1-2):50-5. PubMed ID: 19133321
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Phylogenetic relationships among vertebrate visual pigments.
    Hisatomi O; Kayada S; Aoki Y; Iwasa T; Tokunaga F
    Vision Res; 1994 Dec; 34(23):3097-102. PubMed ID: 7975342
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Paleomolecular biology unravels the evolutionary mystery of vertebrate UV vision.
    Zhang J
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8045-7. PubMed ID: 12835423
    [No Abstract]   [Full Text] [Related]  

  • 80. Photochemistry of the primary event in short-wavelength visual opsins at low temperature.
    Vought BW; Dukkipatti A; Max M; Knox BE; Birge RR
    Biochemistry; 1999 Aug; 38(35):11287-97. PubMed ID: 10471278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.