These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 9512382)
41. Isoflurane reduces N-methyl-D-aspartate toxicity in vivo in the rat cerebral cortex. Harada H; Kelly PJ; Cole DJ; Drummond JC; Patel PM Anesth Analg; 1999 Dec; 89(6):1442-7. PubMed ID: 10589624 [TBL] [Abstract][Full Text] [Related]
42. Isoflurane-induced cerebral hyperemia is partially mediated by nitric oxide and epoxyeicosatrienoic acids in mice in vivo. Kehl F; Shen H; Moreno C; Farber NE; Roman RJ; Kampine JP; Hudetz AG Anesthesiology; 2002 Dec; 97(6):1528-33. PubMed ID: 12459681 [TBL] [Abstract][Full Text] [Related]
43. NMDA receptor activation induces glutamate release through nitric oxide synthesis in guinea pig dentate gyrus. Nei K; Matsuyama S; Shuntoh H; Tanaka C Brain Res; 1996 Jul; 728(1):105-10. PubMed ID: 8864303 [TBL] [Abstract][Full Text] [Related]
44. Neuronal vacuolization and necrosis induced by the noncompetitive N-methyl-D-aspartate (NMDA) antagonist MK(+)801 (dizocilpine maleate): a light and electron microscopic evaluation of the rat retrosplenial cortex. Fix AS; Horn JW; Wightman KA; Johnson CA; Long GG; Storts RW; Farber N; Wozniak DF; Olney JW Exp Neurol; 1993 Oct; 123(2):204-15. PubMed ID: 8405286 [TBL] [Abstract][Full Text] [Related]
45. Effects of glutamate receptor agonist on extracellular glutamate dynamics during moderate cerebral ischemia. Kunimatsu T; Asai S; Kanematsu K; Kohno T; Misaki T; Ishikawa K Brain Res; 2001 Dec; 923(1-2):178-86. PubMed ID: 11743986 [TBL] [Abstract][Full Text] [Related]
46. Levels of endogenous adenosine in rat striatum. I. Regulation by ionotropic glutamate receptors, nitric oxide and free radicals. Delaney SM; Shepel PN; Geiger JD J Pharmacol Exp Ther; 1998 May; 285(2):561-7. PubMed ID: 9580598 [TBL] [Abstract][Full Text] [Related]
47. Role of nitric oxide synthase inhibitors and NMDA receptor antagonist in nicotine-induced behavioral sensitization in the rat. Shim I; Kim HT; Kim YH; Chun BG; Hahm DH; Lee EH; Kim SE; Lee HJ Eur J Pharmacol; 2002 May; 443(1-3):119-24. PubMed ID: 12044801 [TBL] [Abstract][Full Text] [Related]
48. N-methyl-D-aspartate induces cortical hyperemia through cortical spreading depression-dependent and -independent mechanisms in rats. Lenti L; Domoki F; Gáspár T; Snipes JA; Bari F; Busija DW Microcirculation; 2009 Oct; 16(7):629-39. PubMed ID: 19657965 [TBL] [Abstract][Full Text] [Related]
49. Effects of nitric oxide availability on responses of spinal wide dynamic range neurons to excitatory amino acids. Budai D; Wilcox GL; Larson AA Eur J Pharmacol; 1995 May; 278(1):39-47. PubMed ID: 7545123 [TBL] [Abstract][Full Text] [Related]
50. Combining laser Doppler flowmetry with microdialysis: a novel approach to investigate the coupling of regional cerebral blood flow to neuronal activity. Kaiser MG; During MJ J Neurosci Methods; 1995 Aug; 60(1-2):165-73. PubMed ID: 8544476 [TBL] [Abstract][Full Text] [Related]
51. Neurovascular relationships in hippocampal slices: physiological and anatomical studies of mechanisms underlying flow-metabolism coupling in intraparenchymal microvessels. Lovick TA; Brown LA; Key BJ Neuroscience; 1999; 92(1):47-60. PubMed ID: 10392829 [TBL] [Abstract][Full Text] [Related]
52. MK-801 increases endogenous acetylcholine release in the rat parietal cortex: a study using brain microdialysis. Hasegawa M; Kinoshita H; Amano M; Hasegawa T; Kameyama T; Nabeshima T Neurosci Lett; 1993 Feb; 150(1):53-6. PubMed ID: 8469404 [TBL] [Abstract][Full Text] [Related]
53. Nitric oxide (NO) release by glutamate and NMDA in the dorsal horn of the spinal cord: an in vivo electrochemical approach in the rat. Rivot JP; Sousa A; Montagne-Clavel J; Besson JM Brain Res; 1999 Mar; 821(1):101-10. PubMed ID: 10064793 [TBL] [Abstract][Full Text] [Related]
54. Role of nitric oxide in cerebrovascular reactivity to NMDA and hypercapnia during prenatal development in sheep. Harris AP; Ohata H; Koehler RC Int J Dev Neurosci; 2008 Feb; 26(1):47-55. PubMed ID: 17935926 [TBL] [Abstract][Full Text] [Related]
55. NMDA receptors and associated signaling pathways: a role in knee joint blood flow regulation. Lawand NB; Reddig WJ; Cashin AE; Westlund KN; Willis WD Eur J Pharmacol; 2004 Sep; 499(1-2):155-61. PubMed ID: 15363962 [TBL] [Abstract][Full Text] [Related]
56. Inhibitory effects of hypoxia and adenosine on N-methyl-D-aspartate-induced pial arteriolar dilation in piglets. Bari F; Thore CR; Louis TM; Busija DW Brain Res; 1998 Jan; 780(2):237-44. PubMed ID: 9507150 [TBL] [Abstract][Full Text] [Related]
57. Effects of inhibition of neuronal nitric oxide synthase on NMDA-induced changes in cerebral blood flow and oxygen consumption. Chi OZ; Liu X; Weiss HR Exp Brain Res; 2003 Jan; 148(2):256-60. PubMed ID: 12520415 [TBL] [Abstract][Full Text] [Related]
59. NMDA induced glutamate release from the suprachiasmatic nucleus: an in vitro study in the rat. Hamada T; Sonoda R; Watanabe A; Ono M; Shibata S; Watanabe S Neurosci Lett; 1998 Nov; 256(2):93-6. PubMed ID: 9853711 [TBL] [Abstract][Full Text] [Related]