BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 9512488)

  • 1. Mutational analysis of histidine residues in the rabbit Na+/dicarboxylate co-transporter NaDC-1.
    Pajor AM; Sun N; Valmonte HG
    Biochem J; 1998 Apr; 331 ( Pt 1)(Pt 1):257-64. PubMed ID: 9512488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acidic residues involved in cation and substrate interactions in the Na+/dicarboxylate cotransporter, NaDC-1.
    Griffith DA; Pajor AM
    Biochemistry; 1999 Jun; 38(23):7524-31. PubMed ID: 10360950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of cationic amino acids in the Na+/dicarboxylate co-transporter NaDC-1.
    Pajor AM; Kahn ES; Gangula R
    Biochem J; 2000 Sep; 350 Pt 3(Pt 3):677-83. PubMed ID: 10970779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteine residues in the Na+/dicarboxylate co-transporter, NaDC-1.
    Pajor AM; Krajewski SJ; Sun N; Gangula R
    Biochem J; 1999 Nov; 344 Pt 1(Pt 1):205-9. PubMed ID: 10548552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of the renal Na+/dicarboxylate cotransporter, NaDC-1, in COS-7 cells.
    Pajor AM; Valmonte HG
    Pflugers Arch; 1996 Feb; 431(4):645-51. PubMed ID: 8596711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein kinase C-mediated regulation of the renal Na(+)/dicarboxylate cotransporter, NaDC-1.
    Pajor AM; Sun N
    Biochim Biophys Acta; 1999 Aug; 1420(1-2):223-30. PubMed ID: 10446305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression cloning of NaDC-2, an intestinal Na(+)- or Li(+)-dependent dicarboxylate transporter.
    Bai L; Pajor AM
    Am J Physiol; 1997 Aug; 273(2 Pt 1):G267-74. PubMed ID: 9277403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional differences between rabbit and human Na(+)-dicarboxylate cotransporters, NaDC-1 and hNaDC-1.
    Pajor AM; Sun N
    Am J Physiol; 1996 Nov; 271(5 Pt 2):F1093-9. PubMed ID: 8946005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence and functional characterization of a renal sodium/dicarboxylate cotransporter.
    Pajor AM
    J Biol Chem; 1995 Mar; 270(11):5779-85. PubMed ID: 7890707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water transport by the renal Na(+)-dicarboxylate cotransporter.
    Meinild AK; Loo DD; Pajor AM; Zeuthen T; Wright EM
    Am J Physiol Renal Physiol; 2000 May; 278(5):F777-83. PubMed ID: 10807589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformationally sensitive residues in transmembrane domain 9 of the Na+/dicarboxylate co-transporter.
    Pajor AM
    J Biol Chem; 2001 Aug; 276(32):29961-8. PubMed ID: 11399753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the rabbit renal Na(+)-dicarboxylate cotransporter using antifusion protein antibodies.
    Pajor AM; Sun N
    Am J Physiol; 1996 Dec; 271(6 Pt 1):C1808-16. PubMed ID: 8997180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular cloning, chromosomal organization, and functional characterization of a sodium-dicarboxylate cotransporter from mouse kidney.
    Pajor AM; Sun NN
    Am J Physiol Renal Physiol; 2000 Sep; 279(3):F482-90. PubMed ID: 10966927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium and lithium interactions with the Na+/Dicarboxylate cotransporter.
    Pajor AM; Hirayama BA; Loo DD
    J Biol Chem; 1998 Jul; 273(30):18923-9. PubMed ID: 9668069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, functional characterization, and localization of a rat renal Na+-dicarboxylate transporter.
    Sekine T; Cha SH; Hosoyamada M; Kanai Y; Watanabe N; Furuta Y; Fukuda K; Igarashi T; Endou H
    Am J Physiol; 1998 Aug; 275(2):F298-305. PubMed ID: 9691021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning and functional expression of a sodium-dicarboxylate cotransporter from human kidney.
    Pajor AM
    Am J Physiol; 1996 Apr; 270(4 Pt 2):F642-8. PubMed ID: 8967342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium-coupled transporters for Krebs cycle intermediates.
    Pajor AM
    Annu Rev Physiol; 1999; 61():663-82. PubMed ID: 10099705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The substrate recognition domain in the Na+/dicarboxylate and Na+/sulfate cotransporters is located in the carboxy-terminal portion of the protein.
    Pajor AM; Sun N; Bai L; Markovich D; Sule P
    Biochim Biophys Acta; 1998 Mar; 1370(1):98-106. PubMed ID: 9518567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformationally sensitive residues in extracellular loop 5 of the Na+/dicarboxylate co-transporter.
    Pajor AM; Randolph KM
    J Biol Chem; 2005 May; 280(19):18728-35. PubMed ID: 15774465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational analysis of histidine residues in human organic anion transporter 4 (hOAT4).
    Zhou F; Pan Z; Ma J; You G
    Biochem J; 2004 Nov; 384(Pt 1):87-92. PubMed ID: 15291761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.