These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 9512560)

  • 1. A common 40 amino acid motif in eukaryotic RNases H1 and caulimovirus ORF VI proteins binds to duplex RNAs.
    Cerritelli SM; Fedoroff OY; Reid BR; Crouch RJ
    Nucleic Acids Res; 1998 Apr; 26(7):1834-40. PubMed ID: 9512560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The non-RNase H domain of Saccharomyces cerevisiae RNase H1 binds double-stranded RNA: magnesium modulates the switch between double-stranded RNA binding and RNase H activity.
    Cerritelli SM; Crouch RJ
    RNA; 1995 May; 1(3):246-59. PubMed ID: 7489497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eukaryotic RNAse H shares a conserved domain with caulimovirus proteins that facilitate translation of polycistronic RNA.
    Mushegian AR; Edskes HK; Koonin EV
    Nucleic Acids Res; 1994 Oct; 22(20):4163-6. PubMed ID: 7937142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the gene encoding a type 1 RNase H with an N-terminal double-stranded RNA binding domain from a psychrotrophic bacterium.
    Tadokoro T; Chon H; Koga Y; Takano K; Kanaya S
    FEBS J; 2007 Jul; 274(14):3715-3727. PubMed ID: 17608717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eukaryotic RNases H1 act processively by interactions through the duplex RNA-binding domain.
    Gaidamakov SA; Gorshkova II; Schuck P; Steinbach PJ; Yamada H; Crouch RJ; Cerritelli SM
    Nucleic Acids Res; 2005; 33(7):2166-75. PubMed ID: 15831789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the structure of human RNase H1 by site-directed mutagenesis.
    Wu H; Lima WF; Crooke ST
    J Biol Chem; 2001 Jun; 276(26):23547-53. PubMed ID: 11319219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acids essential for RNase H activity of hepadnaviruses are also required for efficient elongation of minus-strand viral DNA.
    Chen Y; Marion PL
    J Virol; 1996 Sep; 70(9):6151-6. PubMed ID: 8709240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional complementation of an Escherichia coli ribonuclease H mutation by a cloned genomic fragment from the trypanosomatid Crithidia fasciculata.
    Campbell AG; Ray DS
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9350-4. PubMed ID: 8415705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cleavage of double-stranded RNA by RNase HI from a thermoacidophilic archaeon, Sulfolobus tokodaii 7.
    Ohtani N; Yanagawa H; Tomita M; Itaya M
    Nucleic Acids Res; 2004; 32(19):5809-19. PubMed ID: 15520465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9.
    Evans SP; Bycroft M
    J Mol Biol; 1999 Aug; 291(3):661-9. PubMed ID: 10448044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of RNase HII substrate recognition using RNase HII-argonaute chimaeric enzymes from Pyrococcus furiosus.
    Kitamura S; Fujishima K; Sato A; Tsuchiya D; Tomita M; Kanai A
    Biochem J; 2010 Feb; 426(3):337-44. PubMed ID: 20047562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribonuclease H: the enzymes in eukaryotes.
    Cerritelli SM; Crouch RJ
    FEBS J; 2009 Mar; 276(6):1494-505. PubMed ID: 19228196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate structure requirements of the Pac1 ribonuclease from Schizosaccharmyces pombe.
    Rotondo G; Huang JY; Frendewey D
    RNA; 1997 Oct; 3(10):1182-93. PubMed ID: 9326493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple ribonuclease H-encoding genes in the Caenorhabditis elegans genome contrasts with the two typical ribonuclease H-encoding genes in the human genome.
    Arudchandran A; Cerritelli SM; Bowen NJ; Chen X; Krause MW; Crouch RJ
    Mol Biol Evol; 2002 Nov; 19(11):1910-9. PubMed ID: 12411600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the cauliflower mosaic virus movement protein RNA-binding domain.
    Thomas CL; Maule AJ
    Virology; 1995 Feb; 206(2):1145-9. PubMed ID: 7856089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of an active form of recombinant Ty1 reverse transcriptase in Escherichia coli: a fusion protein containing the C-terminal region of the Ty1 integrase linked to the reverse transcriptase-RNase H domain exhibits polymerase and RNase H activities.
    Wilhelm M; Boutabout M; Wilhelm FX
    Biochem J; 2000 Jun; 348 Pt 2(Pt 2):337-42. PubMed ID: 10816427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The solution structure of the prototype foamy virus RNase H domain indicates an important role of the basic loop in substrate binding.
    Leo B; Schweimer K; Rösch P; Hartl MJ; Wöhrl BM
    Retrovirology; 2012 Sep; 9():73. PubMed ID: 22962864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNase H1 of Saccharomyces cerevisiae: methods and nomenclature.
    Crouch RJ; Arudchandran A; Cerritelli SM
    Methods Enzymol; 2001; 341():395-413. PubMed ID: 11582793
    [No Abstract]   [Full Text] [Related]  

  • 19. Crystal structure of metagenome-derived LC9-RNase H1 with atypical DEDN active site motif.
    Nguyen TN; You DJ; Kanaya E; Koga Y; Kanaya S
    FEBS Lett; 2013 May; 587(9):1418-23. PubMed ID: 23523920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a conserved motif that is necessary for binding of the vaccinia virus E3L gene products to double-stranded RNA.
    Chang HW; Jacobs BL
    Virology; 1993 Jun; 194(2):537-47. PubMed ID: 8099244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.