These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9512706)

  • 21. Kinetics of thermal denaturation of human rhinoviruses in the presence of anti-viral capsid binders analyzed by capillary electrophoresis.
    Okun VM; Nizet S; Blaas D; Kenndler E
    Electrophoresis; 2002 Mar; 23(6):896-902. PubMed ID: 11920874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design, synthesis, and evaluation of dioxane-based antiviral agents targeted against the Sindbis virus capsid protein.
    Kim HY; Patkar C; Warrier R; Kuhn R; Cushman M
    Bioorg Med Chem Lett; 2005 Jul; 15(13):3207-11. PubMed ID: 15927464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical studies of viral capsid proteins.
    Phelps DK; Speelman B; Post CB
    Curr Opin Struct Biol; 2000 Apr; 10(2):170-3. PubMed ID: 10753813
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The structure of human rhinovirus 16.
    Oliveira MA; Zhao R; Lee WM; Kremer MJ; Minor I; Rueckert RR; Diana GD; Pevear DC; Dutko FJ; McKinlay MA
    Structure; 1993 Sep; 1(1):51-68. PubMed ID: 7915182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human rhinovirus capsid dynamics is controlled by canyon flexibility.
    Reisdorph N; Thomas JJ; Katpally U; Chase E; Harris K; Siuzdak G; Smith TJ
    Virology; 2003 Sep; 314(1):34-44. PubMed ID: 14517058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binding of fluorescent dye to genomic RNA inside intact human rhinovirus after viral capsid penetration investigated by capillary electrophoresis.
    Kremser L; Okun VM; Nicodemou A; Blaas D; Kenndler E
    Anal Chem; 2004 Feb; 76(4):882-7. PubMed ID: 14961716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antiviral agent blocks breathing of the common cold virus.
    Lewis JK; Bothner B; Smith TJ; Siuzdak G
    Proc Natl Acad Sci U S A; 1998 Jun; 95(12):6774-8. PubMed ID: 9618488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The pentamer channel stiffening model for drug action on human rhinovirus HRV-1A.
    Vaidehi N; Goddard WA
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2466-71. PubMed ID: 9122218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computer simulation study of the binding of an antiviral agent to a sensitive and a resistant human rhinovirus.
    Lybrand TP; McCammon JA
    J Comput Aided Mol Des; 1989 Jan; 2(4):259-66. PubMed ID: 2541225
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding of an antiviral agent to a sensitive and a resistant human rhinovirus. Computer simulation studies with sampling of amino acid side-chain conformations. II. Calculation of free-energy differences by thermodynamic integration.
    Wade RC; McCammon JA
    J Mol Biol; 1992 Jun; 225(3):697-712. PubMed ID: 1318384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of three structurally related antiviral compounds in complex with human rhinovirus 16.
    Hadfield AT; Diana GD; Rossmann MG
    Proc Natl Acad Sci U S A; 1999 Dec; 96(26):14730-5. PubMed ID: 10611281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of the multiple copy simultaneous search (MCSS) method to design a new class of picornavirus capsid binding drugs.
    Joseph-McCarthy D; Hogle JM; Karplus M
    Proteins; 1997 Sep; 29(1):32-58. PubMed ID: 9294865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antiviral capsid-binding compounds can inhibit the adsorption of minor receptor rhinoviruses.
    Dewindt B; van Eemeren K; Andries K
    Antiviral Res; 1994 Sep; 25(1):67-72. PubMed ID: 7811059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein flexibility: multiple molecular dynamics simulations of insulin chain B.
    Legge FS; Budi A; Treutlein H; Yarovsky I
    Biophys Chem; 2006 Jan; 119(2):146-57. PubMed ID: 16129550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the mechanism of HRV-14 antiviral compounds: "slow growth" as a conformational search procedure.
    Guha-Biswas M; Holder M; Pettitt BM
    J Med Chem; 1993 Nov; 36(23):3489-95. PubMed ID: 8246217
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational stability of dimeric and monomeric forms of the C-terminal domain of human immunodeficiency virus-1 capsid protein.
    Mateu MG
    J Mol Biol; 2002 Apr; 318(2):519-31. PubMed ID: 12051856
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison of the anti-rhinoviral drug binding pocket in HRV14 and HRV1A.
    Kim KH; Willingmann P; Gong ZX; Kremer MJ; Chapman MS; Minor I; Oliveira MA; Rossmann MG; Andries K; Diana GD
    J Mol Biol; 1993 Mar; 230(1):206-27. PubMed ID: 8383771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The nature of the free energy barriers to two-state folding.
    Akmal A; Muñoz V
    Proteins; 2004 Oct; 57(1):142-52. PubMed ID: 15326600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structures of poliovirus complexes with anti-viral drugs: implications for viral stability and drug design.
    Grant RA; Hiremath CN; Filman DJ; Syed R; Andries K; Hogle JM
    Curr Biol; 1994 Sep; 4(9):784-97. PubMed ID: 7820548
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SDZ 35-682, a new picornavirus capsid-binding agent with potent antiviral activity.
    Rosenwirth B; Oren DA; Arnold E; Kis ZL; Eggers HJ
    Antiviral Res; 1995 Jan; 26(1):65-82. PubMed ID: 7741522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.