These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 9513282)
1. Comparing the optimum performance of the different modes of preparative liquid chromatography. Felinger A; Guiochon G J Chromatogr A; 1998 Feb; 796(1):59-74. PubMed ID: 9513282 [TBL] [Abstract][Full Text] [Related]
2. Optimization of the recovery yield and of the production rate in overloaded gradient-elution reversed-phase chromatography. Jandera P; Komers D; Guiochon G J Chromatogr A; 1998 Feb; 796(1):115-27. PubMed ID: 9513286 [TBL] [Abstract][Full Text] [Related]
3. Modeling of overloaded gradient elution of nociceptin/orphanin FQ in reversed-phase liquid chromatography. Marchetti N; Dondi F; Felinger A; Guerrini R; Salvadori S; Cavazzini A J Chromatogr A; 2005 Jun; 1079(1-2):162-72. PubMed ID: 16038302 [TBL] [Abstract][Full Text] [Related]
4. Comparison of maximum production rates and optimum operating/design parameters in overloaded elution and displacement chromatography. Felinger A; Guiochon G Biotechnol Bioeng; 1993 Jan; 41(1):134-47. PubMed ID: 18601255 [TBL] [Abstract][Full Text] [Related]
5. Optimization of gradient elution conditions in multicomponent preparative liquid chromatography. Shan Y; Seidel-Morgenstern A J Chromatogr A; 2005 Nov; 1093(1-2):47-58. PubMed ID: 16233870 [TBL] [Abstract][Full Text] [Related]
6. Optimization of hydrophobic interaction chromatography using a mathematical model of elution curves of a protein mixture. Lienqueo ME; Shene C; Asenjo J J Mol Recognit; 2009; 22(2):110-20. PubMed ID: 18979460 [TBL] [Abstract][Full Text] [Related]
7. Theoretical study of preparative chromatography using closed-loop recycling with an initial gradient. Sreedhar B; Damtew A; Seidel-Morgenstern A J Chromatogr A; 2009 Jun; 1216(25):4976-88. PubMed ID: 19447399 [TBL] [Abstract][Full Text] [Related]
8. Benefits of solvent concentration pulses in retention time modelling of liquid chromatography. Navarro-Huerta JA; Gisbert-Alonso A; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2019 Jul; 1597():76-88. PubMed ID: 30902430 [TBL] [Abstract][Full Text] [Related]
9. Simulation of elution profiles in liquid chromatography - II: Investigation of injection volume overload under gradient elution conditions applied to second dimension separations in two-dimensional liquid chromatography. Stoll DR; Sajulga RW; Voigt BN; Larson EJ; Jeong LN; Rutan SC J Chromatogr A; 2017 Nov; 1523():162-172. PubMed ID: 28747254 [TBL] [Abstract][Full Text] [Related]
12. Retention models for isocratic and gradient elution in reversed-phase liquid chromatography. Nikitas P; Pappa-Louisi A J Chromatogr A; 2009 Mar; 1216(10):1737-55. PubMed ID: 18838140 [TBL] [Abstract][Full Text] [Related]
13. Theory of separation performance and peak width in gradient elution liquid chromatography: A tutorial. Broeckhoven K; Desmet G Anal Chim Acta; 2022 Jul; 1218():339962. PubMed ID: 35701036 [TBL] [Abstract][Full Text] [Related]
14. Theoretical study of twin-column recycling chromatography with a solvent-gradient for preparative binary separations. Wei F; Sang J; Zhao Y J Chromatogr A; 2021 Aug; 1651():462306. PubMed ID: 34139387 [TBL] [Abstract][Full Text] [Related]
16. Kinetic performance limits of constant pressure versus constant flow rate gradient elution separations. Part II: experimental. Verstraeten M; Broeckhoven K; Dittmann M; Choikhet K; Witt K; Desmet G J Chromatogr A; 2011 Feb; 1218(8):1170-84. PubMed ID: 21256497 [TBL] [Abstract][Full Text] [Related]
17. Improvement of an overloaded, multi-component, solvent gradient bioseparation through multiobjective optimization. Tarafder A; Aumann L; Müller-Späth T; Morbidelli M J Chromatogr A; 2007 Oct; 1167(1):42-53. PubMed ID: 17765250 [TBL] [Abstract][Full Text] [Related]
18. Kinetic performance limits of constant pressure versus constant flow rate gradient elution separations. Part I: theory. Broeckhoven K; Verstraeten M; Choikhet K; Dittmann M; Witt K; Desmet G J Chromatogr A; 2011 Feb; 1218(8):1153-69. PubMed ID: 21256492 [TBL] [Abstract][Full Text] [Related]
19. A graphical method for understanding the kinetics of peak capacity production in gradient elution liquid chromatography. Wang X; Stoll DR; Carr PW; Schoenmakers PJ J Chromatogr A; 2006 Sep; 1125(2):177-81. PubMed ID: 16777118 [TBL] [Abstract][Full Text] [Related]
20. Peak capacity in gradient reversed-phase liquid chromatography of biopolymers. Theoretical and practical implications for the separation of oligonucleotides. Gilar M; Neue UD J Chromatogr A; 2007 Oct; 1169(1-2):139-50. PubMed ID: 17897658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]