These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9513983)

  • 1. Simple apparatus for the electrical cleaning of glass microelectrodes.
    Bud'ko DYu ; Moroz LL; Gurin VN
    Neurosci Behav Physiol; 1998; 28(1):86-9. PubMed ID: 9513983
    [No Abstract]   [Full Text] [Related]  

  • 2. [A simple device for the electrical cleaning of glass microelectrodes].
    Bud'ko DIu; Moroz LL; Gurin VN
    Fiziol Zh Im I M Sechenova; 1996 Jul; 82(7):116-20. PubMed ID: 9053083
    [No Abstract]   [Full Text] [Related]  

  • 3. Thick slurry bevelling: a new technique for bevelling extremely fine microelectrodes and micropipettes.
    Lederer WJ; Spindler AJ; Eisner DA
    Pflugers Arch; 1979 Sep; 381(3):287-8. PubMed ID: 574638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [APPARATUS FOR STRETCHING GLASS MICROELECTRODES].
    MAMBRINI J
    J Physiol (Paris); 1964; 56():469-70. PubMed ID: 14219882
    [No Abstract]   [Full Text] [Related]  

  • 5. [The methodological aspects of studying brain bioelectrical activity in exposure to electromagnetic factors].
    Bezdol'naia IS; Dumanskiĭ IuD; Smolia AL
    Lik Sprava; 1992 Jul; (7):69-71. PubMed ID: 1448993
    [No Abstract]   [Full Text] [Related]  

  • 6. Some anomalous electrical effects in microelectrodes.
    EMCK JH
    Phys Med Biol; 1959 Apr; 3(4):339-44. PubMed ID: 13674894
    [No Abstract]   [Full Text] [Related]  

  • 7. A microdrive for use with glass or metal microelectrodes in recording from freely-moving rats.
    Deadwyler SA; Biela J; Rose G; West M; Lynch G
    Electroencephalogr Clin Neurophysiol; 1979 Dec; 47(6):752-4. PubMed ID: 91506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple method for beveling micropipettes for intracellular recording and current injection.
    Tauchi M; Kikuchi R
    Pflugers Arch; 1977 Mar; 368(1-2):153-5. PubMed ID: 558588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid method for introducing fiberglass filaments into microelectrode capillary tubes.
    Lusted HS; Meikle MB
    Physiol Behav; 1976 Dec; 17(6):1025-6. PubMed ID: 14677601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technique for producing a carbon-fibre microelectrode with the fine recording tip.
    Kuras A; Gutmaniene N
    J Neurosci Methods; 2000 Mar; 96(2):143-6. PubMed ID: 10720678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A device for cutting carbon fibers when preparing microelectrodes].
    Blistrabas R; Kuras A; Khusainovene N
    Fiziol Zh SSSR Im I M Sechenova; 1989 Jun; 75(6):874-5. PubMed ID: 2806654
    [No Abstract]   [Full Text] [Related]  

  • 12. [A carbon microelectrode with reduced intrinsic electrical noise].
    Blistrabas R; Kuras A; Khusainovene N
    Fiziol Zh SSSR Im I M Sechenova; 1989 Jul; 75(7):1019-23. PubMed ID: 2806661
    [No Abstract]   [Full Text] [Related]  

  • 13. [Work experience in recording cochlear potentials with the use of glass microelectrodes].
    Prazhma I
    Vestn Otorinolaringol; 1969; 31(4):71-6. PubMed ID: 5377965
    [No Abstract]   [Full Text] [Related]  

  • 14. A container for storage and testing of glass microelectrodes.
    Rosenberg ME; Pelling CW
    Med Lab Technol; 1972 Apr; 29(2):208-9. PubMed ID: 5071466
    [No Abstract]   [Full Text] [Related]  

  • 15. [Metal microelectrodes and their modules for research on the spatial organization of the activity in screened brain structures].
    Chebkasov SA
    Fiziol Zh Im I M Sechenova; 1995 Oct; 81(10):120-4. PubMed ID: 9026252
    [No Abstract]   [Full Text] [Related]  

  • 16. Dielectrophoretic field-flow microchamber for separation of biological cells based on their electrical properties.
    Čemažar J; Vrtačnik D; Amon S; Kotnik T
    IEEE Trans Nanobioscience; 2011 Mar; 10(1):36-43. PubMed ID: 21511571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled bending of high-resistance glass microelectrodes.
    Hudspeth AJ; Corey DP
    Am J Physiol; 1978 Jan; 234(1):C56-7. PubMed ID: 623241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ultracompliant glass microelectrode for intracellular recording.
    Fedida D; Sethi S; Mulder BJ; ter Keurs HE
    Am J Physiol; 1990 Jan; 258(1 Pt 1):C164-70. PubMed ID: 2301563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple and reliable method for construction of parallel multibarrel microelectrodes.
    Verberne AJ; Owens NC; Jackman GP
    Brain Res Bull; 1995; 36(1):107-8. PubMed ID: 7882042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tip potential of open-tip glass microelectrodes: theoretical and experimental studies.
    Gagné S; Plamondon R
    Can J Physiol Pharmacol; 1983 Aug; 61(8):857-69. PubMed ID: 6627127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.