These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 9514114)
1. Improving the thermostability of Bacillus stearothermophilus neutral protease by introducing proline into the active site helix. Nakamura S; Tanaka T; Yada RY; Nakai S Protein Eng; 1997 Nov; 10(11):1263-9. PubMed ID: 9514114 [TBL] [Abstract][Full Text] [Related]
2. Stabilization of Bacillus stearothermophilus neutral protease by introduction of prolines. Hardy F; Vriend G; Veltman OR; van der Vinne B; Venema G; Eijsink VG FEBS Lett; 1993 Feb; 317(1-2):89-92. PubMed ID: 8428638 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of recombinant triosephosphate isomerase from Bacillus stearothermophilus. An analysis of potential thermostability factors in six isomerases with known three-dimensional structures points to the importance of hydrophobic interactions. Delboni LF; Mande SC; Rentier-Delrue F; Mainfroid V; Turley S; Vellieux FM; Martial JA; Hol WG Protein Sci; 1995 Dec; 4(12):2594-604. PubMed ID: 8580851 [TBL] [Abstract][Full Text] [Related]
5. C-terminal truncations of a thermostable Bacillus stearothermophilus alpha-amylase. Vihinen M; Peltonen T; Iitiä A; Suominen I; Mäntsälä P Protein Eng; 1994 Oct; 7(10):1255-9. PubMed ID: 7855141 [TBL] [Abstract][Full Text] [Related]
6. The effect of cavity-filling mutations on the thermostability of Bacillus stearothermophilus neutral protease. Eijsink VG; Dijkstra BW; Vriend G; van der Zee JR; Veltman OR; van der Vinne B; van den Burg B; Kempe S; Venema G Protein Eng; 1992 Jul; 5(5):421-6. PubMed ID: 1518790 [TBL] [Abstract][Full Text] [Related]
7. Residue Tyr224 is critical for the thermostability of Geobacillus sp. RD-2 lipase. Wu L; Liu B; Hong Y; Sheng D; Shen Y; Ni J Biotechnol Lett; 2010 Jan; 32(1):107-12. PubMed ID: 19763406 [TBL] [Abstract][Full Text] [Related]
8. Contribution of the C-terminal amino acid to the stability of Bacillus subtilis neutral protease. Eijsink VG; Vriend G; Van Den Burg B; Venema G; Stulp BK Protein Eng; 1990 Oct; 4(1):99-104. PubMed ID: 2127107 [TBL] [Abstract][Full Text] [Related]
9. Increasing the thermostability of the neutral proteinase of Bacillus stearothermophilus by improvement of internal hydrogen-bonding. Eijsink VG; Vriend G; Van der Zee JR; Van den Burg B; Venema G Biochem J; 1992 Jul; 285 ( Pt 2)(Pt 2):625-8. PubMed ID: 1637352 [TBL] [Abstract][Full Text] [Related]
10. Contribution of a salt bridge to the thermostability of DNA binding protein HU from Bacillus stearothermophilus determined by site-directed mutagenesis. Kawamura S; Tanaka I; Yamasaki N; Kimura M J Biochem; 1997 Mar; 121(3):448-55. PubMed ID: 9133613 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of thermostability of neutral proteases. Imanaka T Ann N Y Acad Sci; 1990; 613():347-51. PubMed ID: 2075976 [No Abstract] [Full Text] [Related]
12. Improving the thermostability of the neutral protease of Bacillus stearothermophilus by replacing a buried asparagine by leucine. Eijsink VG; van der Zee JR; van den Burg B; Vriend G; Venema G FEBS Lett; 1991 Apr; 282(1):13-6. PubMed ID: 2026247 [TBL] [Abstract][Full Text] [Related]
13. Stabilization of the neutral protease of Bacillus stearothermophilus by removal of a buried water molecule. Vriend G; Berendsen HJ; van der Zee JR; van den Burg B; Venema G; Eijsink VG Protein Eng; 1991 Dec; 4(8):941-5. PubMed ID: 1817257 [TBL] [Abstract][Full Text] [Related]
14. Alteration of specific activity and stability of thermostable neutral protease by site-directed mutagenesis. Kubo M; Mitsuda Y; Takagi M; Imanaka T Appl Environ Microbiol; 1992 Nov; 58(11):3779-83. PubMed ID: 1482198 [TBL] [Abstract][Full Text] [Related]
15. Glycine-15 in the bend between two alpha-helices can explain the thermostability of DNA binding protein HU from Bacillus stearothermophilus. Kawamura S; Kakuta Y; Tanaka I; Hikichi K; Kuhara S; Yamasaki N; Kimura M Biochemistry; 1996 Jan; 35(4):1195-200. PubMed ID: 8573574 [TBL] [Abstract][Full Text] [Related]
16. The amino acidic substitution of cysteine 167 by serine (C167S) in BstVI restriction endonuclease of Bacillus stearothermophilus V affects its conformation and thermostability. Loyola C; Saavedra C; Gómez I; Vásquez C Biochimie; 1999 Mar; 81(3):261-6. PubMed ID: 10385008 [TBL] [Abstract][Full Text] [Related]
17. Investigation of the structural basis for thermostability of DNA-binding protein HU from Bacillus stearothermophilus. Kawamura S; Abe Y; Ueda T; Masumoto K; Imoto T; Yamasaki N; Kimura M J Biol Chem; 1998 Aug; 273(32):19982-7. PubMed ID: 9685334 [TBL] [Abstract][Full Text] [Related]
18. Differentiation between conformational and autoproteolytic stability of the neutral protease from Bacillus stearothermophilus containing an engineered disulfide bond. Dürrschmidt P; Mansfeld J; Ulbrich-Hofmann R Eur J Biochem; 2001 Jun; 268(12):3612-8. PubMed ID: 11422393 [TBL] [Abstract][Full Text] [Related]
19. Protein stabilization by hydrophobic interactions at the surface. Van den Burg B; Dijkstra BW; Vriend G; Van der Vinne B; Venema G; Eijsink VG Eur J Biochem; 1994 Mar; 220(3):981-5. PubMed ID: 8143751 [TBL] [Abstract][Full Text] [Related]
20. Site-directed mutagenesis of a thermostable alpha-amylase from Bacillus stearothermophilus: putative role of three conserved residues. Vihinen M; Ollikka P; Niskanen J; Meyer P; Suominen I; Karp M; Holm L; Knowles J; Mäntsälä P J Biochem; 1990 Feb; 107(2):267-72. PubMed ID: 1694530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]