BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9514117)

  • 1. Synthesis and characterization of supramolecular protein aggregates: self-assembled, molecularly-ordered, tubes from electrostatic complementation of glutamine synthetase dodecamers.
    Chen JP; Dabrowski MJ; Atkins WM
    Protein Eng; 1997 Nov; 10(11):1289-94. PubMed ID: 9514117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular self-assembly of glutamine synthetase: mutagenesis of a novel intermolecular metal binding site required for dodecamer stacking.
    Dabrowski MJ; Yanchunas J; Villafranca BC; Dietze EC; Schurke P; Atkins WM
    Biochemistry; 1994 Dec; 33(50):14957-64. PubMed ID: 7999751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-dependent self-assembly of protein tubes from Escherichia coli glutamine synthetase. Cu(2+) EPR studies of the ligation and stoichiometry of intermolecular metal binding sites.
    Schurke P; Freeman JC; Dabrowski MJ; Atkins WM
    J Biol Chem; 1999 Sep; 274(39):27963-8. PubMed ID: 10488145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular self-assembly of Escherichia coli glutamine synthetase: characterization of dodecamer stacking and high order association.
    Yanchunas J; Dabrowski MJ; Schurke P; Atkins WM
    Biochemistry; 1994 Dec; 33(50):14949-56. PubMed ID: 7999750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering the aggregation properties of dodecameric glutamine synthetase: a single amino acid substitution controls 'salting out'.
    Dabrowski MJ; Dietze EC; Atkins WM
    Protein Eng; 1996 Mar; 9(3):291-8. PubMed ID: 8736496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distances between active site probes in glutamine synthetase from Escherichia coli: fluorescence energy transfer in free and in stacked dodecamers.
    Maurizi MR; Kasprzyk PG; Ginsburg A
    Biochemistry; 1986 Jan; 25(1):141-51. PubMed ID: 2869781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular self-assembly of Escherichia coli glutamine synthetase: effects of pressure and adenylylation state on dodecamer stacking.
    Atkins WM
    Biochemistry; 1994 Dec; 33(50):14965-73. PubMed ID: 7999752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for the helical filament formation of Escherichia coli glutamine synthetase.
    Huang PC; Chen SK; Chiang WH; Ho MR; Wu KP
    Protein Sci; 2022 May; 31(5):e4304. PubMed ID: 35481643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved fluorescence and computational studies of adenylylated glutamine synthetase: analysis of intersubunit interactions.
    Atkins WM; Cader BM; Hemmingsen J; Villafranca JJ
    Protein Sci; 1993 May; 2(5):800-13. PubMed ID: 8098638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site.
    Liaw SH; Kuo I; Eisenberg D
    Protein Sci; 1995 Nov; 4(11):2358-65. PubMed ID: 8563633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of metal-ligand mutations on phosphoryl transfer reactions catalyzed by Escherichia coli glutamine synthetase.
    Abell LM; Schineller J; Keck PJ; Villafranca JJ
    Biochemistry; 1995 Dec; 34(51):16695-702. PubMed ID: 8527443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic effects of active-site ligands on the reversible, partial unfolding of dodecameric glutamine synthetase from Escherichia coli: calorimetric studies.
    Zolkiewski M; Ginsburg A
    Biochemistry; 1992 Dec; 31(48):11991-2000. PubMed ID: 1360813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The central loop of Escherichia coli glutamine synthetase is flexible and functionally passive.
    Pearson JT; Dabrowski MJ; Kung I; Atkins WM
    Arch Biochem Biophys; 2005 Apr; 436(2):397-405. PubMed ID: 15797252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative modification of Escherichia coli glutamine synthetase. Decreases in the thermodynamic stability of protein structure and specific changes in the active site conformation.
    Fisher MT; Stadtman ER
    J Biol Chem; 1992 Jan; 267(3):1872-80. PubMed ID: 1346137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active site ligand stabilization of quaternary structures of glutamine synthetase from Escherichia coli.
    Maurizi MR; Ginsburg A
    J Biol Chem; 1982 Jun; 257(12):7246-51. PubMed ID: 6123504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the catalytic roles of n2-site glutamate residues in Escherichia coli glutamine synthetase by mutagenesis.
    Witmer MR; Palmieri-Young D; Villafranca JJ
    Protein Sci; 1994 Oct; 3(10):1746-59. PubMed ID: 7849593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration of catalytic activity of glutamine synthetase mutants by chemical activation: exploration of the role of arginines 339 and 359 in activity.
    Dhalla AM; Li B; Alibhai MF; Yost KJ; Hemmingsen JM; Atkins WM; Schineller J; Villafranca JJ
    Protein Sci; 1994 Mar; 3(3):476-81. PubMed ID: 7912599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent probes for measuring the binding constants and distances between the metal ions bound to Escherichia coli glutamine synthetase.
    Lin WY; Eads CD; Villafranca JJ
    Biochemistry; 1991 Apr; 30(14):3421-6. PubMed ID: 1672822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the effects of posttranslational adenylylation on the metal binding sites of Escherichia coli glutamine synthetase using lanthanide luminescence spectroscopy.
    Reynaldo LP; Villafranca JJ; Horrocks WD
    Protein Sci; 1996 Dec; 5(12):2532-44. PubMed ID: 8976562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for protein-based nanofabrication: Ni2+-NTA as a chemical mask to control biologically imposed symmetry.
    Dabrowski MJ; Chen JP; Shi H; Chin WC; Atkins WM
    Chem Biol; 1998 Dec; 5(12):689-97. PubMed ID: 9862795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.