BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 95142)

  • 1. An improved cobalt labeling technique with complex compounds.
    Górcs T; Antal M; Oláh E; Székely G
    Acta Biol Acad Sci Hung; 1979; 30(1):79-86. PubMed ID: 95142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intensification of cobaltous sulphide precipitate in frog nervous tissue.
    Székely G; Gallyas F
    Acta Biol Acad Sci Hung; 1975; 26(3-4):175-88. PubMed ID: 62478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elimination of cobalt from the frog brain introduced into the optic centres through the optic nerve.
    Lázár G
    Acta Biol Acad Sci Hung; 1979; 30(3):245-55. PubMed ID: 317769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segregation of muscle and cutaneous afferent fibre terminals in the brachial spinal cord of the frog.
    Székely G; Antal M
    J Hirnforsch; 1984; 25(6):671-5. PubMed ID: 6335516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal connections through the posterior commissure in the frog Rana esculenta.
    Lázár G; Pál E
    J Hirnforsch; 1999; 39(3):369-74. PubMed ID: 10536869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology of the cells of origin of descending pathways to the spinal cord in Rana esculenta. A tracing study using cobaltic-lysine complex.
    Tóth P; Csank G; Lázár G
    J Hirnforsch; 1985; 26(4):365-83. PubMed ID: 3934259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cobalt injected into the right and left fasciculi retroflexes clarifies the organization of this pathway.
    Kemali M; Làzàr G
    J Comp Neurol; 1985 Mar; 233(1):1-11. PubMed ID: 2579981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal cord projections from hindlimb muscle nerves in the rat studied by transganglionic transport of horseradish peroxidase, wheat germ agglutinin conjugated horseradish peroxidase, or horseradish peroxidase with dimethylsulfoxide.
    Molander C; Grant G
    J Comp Neurol; 1987 Jun; 260(2):246-55. PubMed ID: 3038969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology and distribution of the glossopharyngeal nerve afferent and efferent neurons in the Mexican salamander, axolotl: a cobaltic-lysine study.
    Nagai T; Matsushima T
    J Comp Neurol; 1990 Dec; 302(3):473-84. PubMed ID: 1702112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular staining of motoneurons with complex cobalt compounds in the frog.
    Urbán L; Székely G
    J Neurobiol; 1983 Mar; 14(2):157-61. PubMed ID: 6188803
    [No Abstract]   [Full Text] [Related]  

  • 11. Termination areas of corticobulbar and corticospinal fibres in the rat.
    Antal M
    J Hirnforsch; 1984; 25(6):647-59. PubMed ID: 6526991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cobalt mapping of the nervous system: evidence that cobalt can cross a neuronal membrane.
    Fredman SM; Jahan-Parwar B
    J Neurobiol; 1980 Mar; 11(2):209-14. PubMed ID: 6155441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology and location of tectal projection neurons in frogs: a study with HRP and cobalt-filling.
    Lázár G; Tóth P; Csank G; Kicliter E
    J Comp Neurol; 1983 Mar; 215(1):108-20. PubMed ID: 6602154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The motor nuclei of the glossopharyngeal-vagal and the accessorius nerves in the rat.
    Matesz C; Székely G
    Acta Biol Hung; 1983; 34(2-3):215-29. PubMed ID: 6198828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of cobalt labelling with immunocytochemical reactions for electron microscopic investigations on frog spinal cord.
    Nagy I; Sik A; Polgár E; Petkó M; Antal M
    Microsc Res Tech; 1994 May; 28(1):60-6. PubMed ID: 7520303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The extracranial portion of the pineal complex of the frog (frontal organ) is connected to the pineal, the hypothalamus, the brain stem and the retina.
    Kemali M; De Santis A
    Exp Brain Res; 1983; 53(1):193-6. PubMed ID: 6201381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobalt accumulation in neurons expressing ionotropic excitatory amino acid receptors in young rat spinal cord: morphology and distribution.
    Nagy I; Woolf CJ; Dray A; Urbán L
    J Comp Neurol; 1994 Jun; 344(3):321-35. PubMed ID: 8063957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Monitoring retrograde adenoviral transgene expression in spinal cord and anterograde labeling of the peripheral nerves].
    Han J; Zhang Y; Chen W; Song C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Mar; 19(3):215-20. PubMed ID: 15828479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine structure of dorsal root terminals in the dorsal horn of the frog spinal cord.
    Lévai G; Matesz C; Székely G
    Acta Biol Acad Sci Hung; 1982; 33(2-3):231-46. PubMed ID: 6983799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of capsaicin and dimethyl sulphoxide (DMSO) on ion transport in isolated skin of frog (Rana esculenta L.).
    Kosik-Bogacka DI; Tyrakowski T
    Folia Biol (Krakow); 2003; 51(1-2):117-23. PubMed ID: 14686656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.