BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 9514263)

  • 21. Self-activation of recombinant human lysosomal procathepsin D at a newly engineered cleavage junction, "short" pseudocathepsin D.
    Beyer BM; Dunn BM
    J Biol Chem; 1996 Jun; 271(26):15590-6. PubMed ID: 8663051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring the subsite specificity of Schistosoma mansoni aspartyl hemoglobinase through comparative molecular modelling.
    Silva FP; Ribeiro F; Katz N; Giovanni-De-Simone S
    FEBS Lett; 2002 Mar; 514(2-3):141-8. PubMed ID: 11943140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rational engineering of mannosyl binding in the distal glycone subsites of Cellulomonas fimi endo-beta-1,4-mannanase: mannosyl binding promoted at subsite -2 and demoted at subsite -3.
    Hekmat O; Lo Leggio L; Rosengren A; Kamarauskaite J; Kolenova K; Stålbrand H
    Biochemistry; 2010 Jun; 49(23):4884-96. PubMed ID: 20426480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coulombic forces in protein-RNA interactions: binding and cleavage by ribonuclease A and variants at Lys7, Arg10, and Lys66.
    Fisher BM; Ha JH; Raines RT
    Biochemistry; 1998 Sep; 37(35):12121-32. PubMed ID: 9724524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Species differences between human and rat in the substrate specificity of cathepsin K.
    Tada S; Tsutsumi K; Ishihara H; Suzuki K; Gohda K; Teno N
    J Biochem; 2008 Oct; 144(4):499-506. PubMed ID: 18664521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Homology modeling and SAR analysis of Schistosoma japonicum cathepsin D (SjCD) with statin inhibitors identify a unique active site steric barrier with potential for the design of specific inhibitors.
    Caffrey CR; Placha L; Barinka C; Hradilek M; Dostál J; Sajid M; McKerrow JH; Majer P; Konvalinka J; Vondrásek J
    Biol Chem; 2005 Apr; 386(4):339-49. PubMed ID: 15899696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structures of native and inhibited forms of human cathepsin D: implications for lysosomal targeting and drug design.
    Baldwin ET; Bhat TN; Gulnik S; Hosur MV; Sowder RC; Cachau RE; Collins J; Silva AM; Erickson JW
    Proc Natl Acad Sci U S A; 1993 Jul; 90(14):6796-800. PubMed ID: 8393577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reactivities of the S2 and S3 subsite residues of thrombin with the native and heparin-induced conformers of antithrombin.
    Rezaie AR
    Protein Sci; 1998 Feb; 7(2):349-57. PubMed ID: 9521111
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carboxy-monopeptidase substrate specificity of human cathepsin X.
    Devanathan G; Turnbull JL; Ziomek E; Purisima EO; Ménard R; Sulea T
    Biochem Biophys Res Commun; 2005 Apr; 329(2):445-52. PubMed ID: 15737607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Substrate Specificity of Cysteine Proteases Beyond the S
    Corvo I; Ferraro F; Merlino A; Zuberbühler K; O'Donoghue AJ; Pastro L; Pi-Denis N; Basika T; Roche L; McKerrow JH; Craik CS; Caffrey CR; Tort JF
    Front Mol Biosci; 2018; 5():40. PubMed ID: 29725596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substrate specificity of insect trypsins and the role of their subsites in catalysis.
    Lopes AR; Juliano MA; Marana SR; Juliano L; Terra WR
    Insect Biochem Mol Biol; 2006 Feb; 36(2):130-40. PubMed ID: 16431280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomimetic Macrocyclic Inhibitors of Human Cathepsin D: Structure-Activity Relationship and Binding Mode Analysis.
    Houštecká R; Hadzima M; Fanfrlík J; Brynda J; Pallová L; Hánová I; Mertlíková-Kaiserová H; Lepšík M; Horn M; Smrčina M; Majer P; Mareš M
    J Med Chem; 2020 Feb; 63(4):1576-1596. PubMed ID: 32003991
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring inhibitor binding at the S' subsites of cathepsin L.
    Chowdhury SF; Joseph L; Kumar S; Tulsidas SR; Bhat S; Ziomek E; Ménard R; Sivaraman J; Purisima EO
    J Med Chem; 2008 Mar; 51(5):1361-8. PubMed ID: 18278855
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extended binding inhibitors of chymotrypsin that interact with leaving group subsites S1'-S3'.
    Imperiali B; Abeles RH
    Biochemistry; 1987 Jul; 26(14):4474-7. PubMed ID: 3663602
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of acridinyl hydrazides as potent aspartic protease inhibitors.
    Azim MK; Ahmed W; Khan IA; Rao NA; Khan KM
    Bioorg Med Chem Lett; 2008 May; 18(9):3011-5. PubMed ID: 18417344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering the substrate and inhibitor specificities of human coagulation Factor VIIa.
    Larsen KS; Østergaard H; Bjelke JR; Olsen OH; Rasmussen HB; Christensen L; Kragelund BB; Stennicke HR
    Biochem J; 2007 Aug; 405(3):429-38. PubMed ID: 17456045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding the P1' specificity of the matrix metalloproteinases: effect of S1' pocket mutations in matrilysin and stromelysin-1.
    Welch AR; Holman CM; Huber M; Brenner MC; Browner MF; Van Wart HE
    Biochemistry; 1996 Aug; 35(31):10103-9. PubMed ID: 8756473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Subsite specificity studies on the unusual cysteine protease clostripain: charged residues in the P3 position indicate a narrow subsite region.
    Bordusa F; Ullmann D; Jakubke HD
    Biol Chem; 1997 Oct; 378(10):1193-8. PubMed ID: 9372191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping of lysosomal targeting determinants of cathepsin D.
    Schorey J; Chirgwin J
    Adv Exp Med Biol; 1991; 306():339-42. PubMed ID: 1812724
    [No Abstract]   [Full Text] [Related]  

  • 40. Arg143 and Lys192 of the human mast cell chymase mediate the preference for acidic amino acids in position P2' of substrates.
    Andersson MK; Thorpe M; Hellman L
    FEBS J; 2010 May; 277(10):2255-67. PubMed ID: 20423454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.