These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 9514742)
1. Structural principles for the inhibition of the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates. Brautigam CA; Steitz TA J Mol Biol; 1998 Mar; 277(2):363-77. PubMed ID: 9514742 [TBL] [Abstract][Full Text] [Related]
2. Structures of normal single-stranded DNA and deoxyribo-3'-S-phosphorothiolates bound to the 3'-5' exonucleolytic active site of DNA polymerase I from Escherichia coli. Brautigam CA; Sun S; Piccirilli JA; Steitz TA Biochemistry; 1999 Jan; 38(2):696-704. PubMed ID: 9888810 [TBL] [Abstract][Full Text] [Related]
3. Pre-steady-state kinetics of RB69 DNA polymerase and its exo domain mutants: effect of pH and thiophosphoryl linkages on 3'-5' exonuclease activity. Wang CX; Zakharova E; Li J; Joyce CM; Wang J; Konigsberg W Biochemistry; 2004 Apr; 43(13):3853-61. PubMed ID: 15049692 [TBL] [Abstract][Full Text] [Related]
4. Structural elucidation of the binding and inhibitory properties of lanthanide (III) ions at the 3'-5' exonucleolytic active site of the Klenow fragment. Brautigam CA; Aschheim K; Steitz TA Chem Biol; 1999 Dec; 6(12):901-8. PubMed ID: 10631518 [TBL] [Abstract][Full Text] [Related]
5. Role of metal ions in the hydrolysis reaction catalyzed by RNase P RNA from Bacillus subtilis. Warnecke JM; Held R; Busch S; Hartmann RK J Mol Biol; 1999 Jul; 290(2):433-45. PubMed ID: 10390342 [TBL] [Abstract][Full Text] [Related]
6. A domain of the Klenow fragment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity. Freemont PS; Ollis DL; Steitz TA; Joyce CM Proteins; 1986 Sep; 1(1):66-73. PubMed ID: 3329725 [TBL] [Abstract][Full Text] [Related]
7. Kinetic and structural consequences of replacing the aspartate bridge by asparagine in the catalytic metal triad of Escherichia coli alkaline phosphatase. Tibbitts TT; Murphy JE; Kantrowitz ER J Mol Biol; 1996 Apr; 257(3):700-15. PubMed ID: 8648634 [TBL] [Abstract][Full Text] [Related]
8. Crystal structures of an NH2-terminal fragment of T4 DNA polymerase and its complexes with single-stranded DNA and with divalent metal ions. Wang J; Yu P; Lin TC; Konigsberg WH; Steitz TA Biochemistry; 1996 Jun; 35(25):8110-9. PubMed ID: 8679562 [TBL] [Abstract][Full Text] [Related]
9. DNA cleavage by EcoRV endonuclease: two metal ions in three metal ion binding sites. Horton NC; Perona JJ Biochemistry; 2004 Jun; 43(22):6841-57. PubMed ID: 15170321 [TBL] [Abstract][Full Text] [Related]
10. Two divalent metal ions in the active site of a new crystal form of human apurinic/apyrimidinic endonuclease, Ape1: implications for the catalytic mechanism. Beernink PT; Segelke BW; Hadi MZ; Erzberger JP; Wilson DM; Rupp B J Mol Biol; 2001 Apr; 307(4):1023-34. PubMed ID: 11286553 [TBL] [Abstract][Full Text] [Related]
11. Interaction of DNA polymerase I (Klenow fragment) with DNA substrates containing extrahelical bases: implications for proofreading of frameshift errors during DNA synthesis. Lam WC; Van der Schans EJ; Sowers LC; Millar DP Biochemistry; 1999 Mar; 38(9):2661-8. PubMed ID: 10052936 [TBL] [Abstract][Full Text] [Related]
12. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase. Hong SB; Raushel FM Biochemistry; 1996 Aug; 35(33):10904-12. PubMed ID: 8718883 [TBL] [Abstract][Full Text] [Related]
13. Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. Beese LS; Steitz TA EMBO J; 1991 Jan; 10(1):25-33. PubMed ID: 1989886 [TBL] [Abstract][Full Text] [Related]
14. Effects of mutations on the partitioning of DNA substrates between the polymerase and 3'-5' exonuclease sites of DNA polymerase I (Klenow fragment). Lam WC; Van der Schans EJ; Joyce CM; Millar DP Biochemistry; 1998 Feb; 37(6):1513-22. PubMed ID: 9484221 [TBL] [Abstract][Full Text] [Related]
15. Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch. Singh K; Modak MJ Biochemistry; 2005 Jun; 44(22):8101-10. PubMed ID: 15924429 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of the purine nucleoside phosphorylase (PNP) from Cellulomonas sp. and its implication for the mechanism of trimeric PNPs. Tebbe J; Bzowska A; Wielgus-Kutrowska B; Schröder W; Kazimierczuk Z; Shugar D; Saenger W; Koellner G J Mol Biol; 1999 Dec; 294(5):1239-55. PubMed ID: 10600382 [TBL] [Abstract][Full Text] [Related]
17. Structure of Escherichia coli exonuclease I in complex with thymidine 5'-monophosphate. Busam RD Acta Crystallogr D Biol Crystallogr; 2008 Feb; 64(Pt 2):206-10. PubMed ID: 18219121 [TBL] [Abstract][Full Text] [Related]
18. Kinetic mechanism of the 3'-->5' proofreading exonuclease of DNA polymerase III. Analysis by steady state and pre-steady state methods. Miller H; Perrino FW Biochemistry; 1996 Oct; 35(39):12919-25. PubMed ID: 8841137 [TBL] [Abstract][Full Text] [Related]
19. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates. Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327 [TBL] [Abstract][Full Text] [Related]
20. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I. Carver TE; Millar DP Biochemistry; 1998 Feb; 37(7):1898-904. PubMed ID: 9485315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]