These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 9515055)

  • 1. The aggregation in human lens proteins blocks the scavenging of UVA-generated singlet oxygen by ascorbic acid and glutathione.
    Linetsky M; Ranson N; Ortwerth BJ
    Arch Biochem Biophys; 1998 Mar; 351(2):180-8. PubMed ID: 9515055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UVA irradiation of human lens proteins produces residual oxidation of ascorbic acid even in the presence of high levels of glutathione.
    Ortwerth BJ; Coots A; James HL; Linetsky M
    Arch Biochem Biophys; 1998 Mar; 351(2):189-96. PubMed ID: 9515056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on singlet oxygen formation and UVA light-mediated photobleaching of the yellow chromophores in human lenses.
    Ortwerth BJ; Chemoganskiy V; Olesen PR
    Exp Eye Res; 2002 Feb; 74(2):217-29. PubMed ID: 11950232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ascorbic acid and glucose oxidation by ultraviolet A-generated oxygen free radicals.
    Giangiacomo A; Olesen PR; Ortwerth BJ
    Invest Ophthalmol Vis Sci; 1996 Jul; 37(8):1549-56. PubMed ID: 8675397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The generation of superoxide anion by the UVA irradiation of human lens proteins.
    Linetsky M; James HL; Ortwerth BJ
    Exp Eye Res; 1996 Jul; 63(1):67-74. PubMed ID: 8983965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tryptophan metabolites from young human lenses and the photooxidation of ascorbic acid by UVA light.
    Ortwerth BJ; Bhattacharyya J; Shipova E
    Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3311-9. PubMed ID: 19264899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan-derived ultraviolet filter compounds covalently bound to lens proteins are photosensitizers of oxidative damage.
    Mizdrak J; Hains PG; Truscott RJ; Jamie JF; Davies MJ
    Free Radic Biol Med; 2008 Mar; 44(6):1108-19. PubMed ID: 18206985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatographic comparison of the UVA sensitizers present in brunescent cataracts and in calf lens proteins ascorbylated in vitro.
    Lee KW; Meyer N; Ortwerth BJ
    Exp Eye Res; 1999 Oct; 69(4):375-84. PubMed ID: 10504271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous generation of superoxide anion by human lens proteins and by calf lens proteins ascorbylated in vitro.
    Linetsky M; James HL; Ortwerth BJ
    Exp Eye Res; 1999 Aug; 69(2):239-48. PubMed ID: 10433859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitation of the reactive oxygen species generated by the UVA irradiation of ascorbic acid-glycated lens proteins.
    Linetsky M; Ortwerth BJ
    Photochem Photobiol; 1996 May; 63(5):649-55. PubMed ID: 8628756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible binding of kynurenine to lens proteins: potential protection by glutathione in young lenses.
    Parker NR; Korlimbinis A; Jamie JF; Davies MJ; Truscott RJ
    Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3705-13. PubMed ID: 17652742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper(II) as an efficient scavenger of singlet molecular oxygen.
    Joshi PC
    Indian J Biochem Biophys; 1998 Aug; 35(4):208-15. PubMed ID: 9854900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxytyrosol, a natural antioxidant from olive oil, prevents protein damage induced by long-wave ultraviolet radiation in melanoma cells.
    D'Angelo S; Ingrosso D; Migliardi V; Sorrentino A; Donnarumma G; Baroni A; Masella L; Tufano MA; Zappia M; Galletti P
    Free Radic Biol Med; 2005 Apr; 38(7):908-19. PubMed ID: 15749387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemiluminescence associated with singlet oxygen reactions with amino acids, peptides and proteins.
    Alarcón E; Henríquez C; Aspée A; Lissi EA
    Photochem Photobiol; 2007; 83(3):475-80. PubMed ID: 17034271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutathione and NADH, but not ascorbate, protect lens proteins from modification by UV filters.
    Taylor LM; Andrew Aquilina J; Jamie JF; Truscott RJ
    Exp Eye Res; 2002 Apr; 74(4):503-11. PubMed ID: 12076094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous chemical and photochemical protein crosslinking induced by irradiation of eye lens proteins in the presence of ascorbate: the photosensitizing role of an UVA-visible-absorbing decomposition product of vitamin C.
    Avila F; Friguet B; Silva E
    Photochem Photobiol Sci; 2010 Oct; 9(10):1351-8. PubMed ID: 20734005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimization of photooxidative insult to calf lens protein irradiated with near UV-light in the presence of pigmented glucosides derived from human lens protein.
    Inoue A; Sasaki D; Satoh K
    Exp Eye Res; 2004 Dec; 79(6):833-7. PubMed ID: 15642320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased sensitivity of amino-arm truncated betaA3-crystallin to UV-light-induced photoaggregation.
    Sergeev YV; Soustov LV; Chelnokov EV; Bityurin NM; Backlund PS; Wingfield PT; Ostrovsky MA; Hejtmancik JF
    Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3263-73. PubMed ID: 16123428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitation of the singlet oxygen produced by UVA irradiation of human lens proteins.
    Linetsky M; Ortwerth BJ
    Photochem Photobiol; 1997 Mar; 65(3):522-9. PubMed ID: 9077138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of oxidants in the near-UV photooxidation of human lens alpha-crystallin.
    Andley UP; Clark BA
    Invest Ophthalmol Vis Sci; 1989 Apr; 30(4):706-13. PubMed ID: 2703311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.