BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 9515055)

  • 1. The aggregation in human lens proteins blocks the scavenging of UVA-generated singlet oxygen by ascorbic acid and glutathione.
    Linetsky M; Ranson N; Ortwerth BJ
    Arch Biochem Biophys; 1998 Mar; 351(2):180-8. PubMed ID: 9515055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UVA irradiation of human lens proteins produces residual oxidation of ascorbic acid even in the presence of high levels of glutathione.
    Ortwerth BJ; Coots A; James HL; Linetsky M
    Arch Biochem Biophys; 1998 Mar; 351(2):189-96. PubMed ID: 9515056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on singlet oxygen formation and UVA light-mediated photobleaching of the yellow chromophores in human lenses.
    Ortwerth BJ; Chemoganskiy V; Olesen PR
    Exp Eye Res; 2002 Feb; 74(2):217-29. PubMed ID: 11950232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ascorbic acid and glucose oxidation by ultraviolet A-generated oxygen free radicals.
    Giangiacomo A; Olesen PR; Ortwerth BJ
    Invest Ophthalmol Vis Sci; 1996 Jul; 37(8):1549-56. PubMed ID: 8675397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The generation of superoxide anion by the UVA irradiation of human lens proteins.
    Linetsky M; James HL; Ortwerth BJ
    Exp Eye Res; 1996 Jul; 63(1):67-74. PubMed ID: 8983965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tryptophan metabolites from young human lenses and the photooxidation of ascorbic acid by UVA light.
    Ortwerth BJ; Bhattacharyya J; Shipova E
    Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3311-9. PubMed ID: 19264899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan-derived ultraviolet filter compounds covalently bound to lens proteins are photosensitizers of oxidative damage.
    Mizdrak J; Hains PG; Truscott RJ; Jamie JF; Davies MJ
    Free Radic Biol Med; 2008 Mar; 44(6):1108-19. PubMed ID: 18206985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatographic comparison of the UVA sensitizers present in brunescent cataracts and in calf lens proteins ascorbylated in vitro.
    Lee KW; Meyer N; Ortwerth BJ
    Exp Eye Res; 1999 Oct; 69(4):375-84. PubMed ID: 10504271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous generation of superoxide anion by human lens proteins and by calf lens proteins ascorbylated in vitro.
    Linetsky M; James HL; Ortwerth BJ
    Exp Eye Res; 1999 Aug; 69(2):239-48. PubMed ID: 10433859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitation of the reactive oxygen species generated by the UVA irradiation of ascorbic acid-glycated lens proteins.
    Linetsky M; Ortwerth BJ
    Photochem Photobiol; 1996 May; 63(5):649-55. PubMed ID: 8628756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible binding of kynurenine to lens proteins: potential protection by glutathione in young lenses.
    Parker NR; Korlimbinis A; Jamie JF; Davies MJ; Truscott RJ
    Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3705-13. PubMed ID: 17652742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper(II) as an efficient scavenger of singlet molecular oxygen.
    Joshi PC
    Indian J Biochem Biophys; 1998 Aug; 35(4):208-15. PubMed ID: 9854900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxytyrosol, a natural antioxidant from olive oil, prevents protein damage induced by long-wave ultraviolet radiation in melanoma cells.
    D'Angelo S; Ingrosso D; Migliardi V; Sorrentino A; Donnarumma G; Baroni A; Masella L; Tufano MA; Zappia M; Galletti P
    Free Radic Biol Med; 2005 Apr; 38(7):908-19. PubMed ID: 15749387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemiluminescence associated with singlet oxygen reactions with amino acids, peptides and proteins.
    Alarcón E; Henríquez C; Aspée A; Lissi EA
    Photochem Photobiol; 2007; 83(3):475-80. PubMed ID: 17034271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutathione and NADH, but not ascorbate, protect lens proteins from modification by UV filters.
    Taylor LM; Andrew Aquilina J; Jamie JF; Truscott RJ
    Exp Eye Res; 2002 Apr; 74(4):503-11. PubMed ID: 12076094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous chemical and photochemical protein crosslinking induced by irradiation of eye lens proteins in the presence of ascorbate: the photosensitizing role of an UVA-visible-absorbing decomposition product of vitamin C.
    Avila F; Friguet B; Silva E
    Photochem Photobiol Sci; 2010 Oct; 9(10):1351-8. PubMed ID: 20734005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimization of photooxidative insult to calf lens protein irradiated with near UV-light in the presence of pigmented glucosides derived from human lens protein.
    Inoue A; Sasaki D; Satoh K
    Exp Eye Res; 2004 Dec; 79(6):833-7. PubMed ID: 15642320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased sensitivity of amino-arm truncated betaA3-crystallin to UV-light-induced photoaggregation.
    Sergeev YV; Soustov LV; Chelnokov EV; Bityurin NM; Backlund PS; Wingfield PT; Ostrovsky MA; Hejtmancik JF
    Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3263-73. PubMed ID: 16123428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitation of the singlet oxygen produced by UVA irradiation of human lens proteins.
    Linetsky M; Ortwerth BJ
    Photochem Photobiol; 1997 Mar; 65(3):522-9. PubMed ID: 9077138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of oxidants in the near-UV photooxidation of human lens alpha-crystallin.
    Andley UP; Clark BA
    Invest Ophthalmol Vis Sci; 1989 Apr; 30(4):706-13. PubMed ID: 2703311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.