BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 9515798)

  • 1. Genotoxicity of 2,6- and 3,5-dimethylaniline in cultured mammalian cells: the role of reactive oxygen species.
    Chao MW; Kim MY; Ye W; Ge J; Trudel LJ; Belanger CL; Skipper PL; Engelward BP; Tannenbaum SR; Wogan GN
    Toxicol Sci; 2012 Nov; 130(1):48-59. PubMed ID: 22831970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asbestos conceives Fe(II)-dependent mutagenic stromal milieu through ceaseless macrophage ferroptosis and β-catenin induction in mesothelium.
    Ito F; Yanatori I; Maeda Y; Nimura K; Ito S; Hirayama T; Nagasawa H; Kohyama N; Okazaki Y; Akatsuka S; Toyokuni S
    Redox Biol; 2020 Sep; 36():101616. PubMed ID: 32863225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zeolites ameliorate asbestos toxicity in a transgenic model of malignant mesothelioma.
    Fan X; McLaughlin C; Robinson C; Ravasini J; Schelch K; Johnson T; van Zandwijk N; Reid G; George AM
    FASEB Bioadv; 2019 Sep; 1(9):550-560. PubMed ID: 32123850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface reactivity of amphibole asbestos: a comparison between crocidolite and tremolite.
    Andreozzi GB; Pacella A; Corazzari I; Tomatis M; Turci F
    Sci Rep; 2017 Oct; 7(1):14696. PubMed ID: 29089634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferroptosis-dependent extracellular vesicles from macrophage contribute to asbestos-induced mesothelial carcinogenesis through loading ferritin.
    Ito F; Kato K; Yanatori I; Murohara T; Toyokuni S
    Redox Biol; 2021 Nov; 47():102174. PubMed ID: 34700146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plants, Microorganisms and Their Metabolites in Supporting Asbestos Detoxification-A Biological Perspective in Asbestos Treatment.
    Łuniewski S; Rogowska W; Łozowicka B; Iwaniuk P
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of endolysosome function in iron metabolism and brain carcinogenesis.
    Halcrow PW; Lynch ML; Geiger JD; Ohm JE
    Semin Cancer Biol; 2021 Nov; 76():74-85. PubMed ID: 34139350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Immune Microenvironment in Mesothelioma: Mechanisms of Resistance to Immunotherapy.
    Chu GJ; van Zandwijk N; Rasko JEJ
    Front Oncol; 2019; 9():1366. PubMed ID: 31867277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between iron bone marrow stores and response to treatment in pediatric acute lymphoblastic leukemia.
    Moafi A; Ziaie M; Abedi M; Rahgozar S; Reisi N; Nematollahi P; Moafi H
    Medicine (Baltimore); 2017 Nov; 96(44):e8511. PubMed ID: 29095311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inducible nitric oxide synthase genetic polymorphism and risk of asbestosis.
    Franko A; Dodič-Fikfak M; Arnerić N; Dolžan V
    J Biomed Biotechnol; 2011; 2011():685870. PubMed ID: 21660141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of mutagenicity in asbestos fiber-induced carcinogenicity and other diseases.
    Huang SX; Jaurand MC; Kamp DW; Whysner J; Hei TK
    J Toxicol Environ Health B Crit Rev; 2011; 14(1-4):179-245. PubMed ID: 21534089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples.
    Kell DB
    Arch Toxicol; 2010 Nov; 84(11):825-89. PubMed ID: 20967426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos?
    Sanchez VC; Pietruska JR; Miselis NR; Hurt RH; Kane AB
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2009; 1(5):511-29. PubMed ID: 20049814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells.
    Xu A; Chai Y; Nohmi T; Hei TK
    Part Fibre Toxicol; 2009 Jan; 6():3. PubMed ID: 19154577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insight into intrachromosomal deletions induced by chrysotile in the gpt delta transgenic mutation assay.
    Xu A; Smilenov LB; He P; Masumura K; Nohmi T; Yu Z; Hei TK
    Environ Health Perspect; 2007 Jan; 115(1):87-92. PubMed ID: 17366825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of the genotoxicity of crocidolite asbestos in mammalian cells: implication from mutation patterns induced by reactive oxygen species.
    Xu A; Zhou H; Yu DZ; Hei TK
    Environ Health Perspect; 2002 Oct; 110(10):1003-8. PubMed ID: 12361925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhaled crocidolite mutagenicity in lung DNA.
    Rihn B; Coulais C; Kauffer E; Bottin MC; Martin P; Yvon F; Vigneron JC; Binet S; Monhoven N; Steiblen G; Keith G
    Environ Health Perspect; 2000 Apr; 108(4):341-6. PubMed ID: 10753093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecular basis of asbestos induced lung injury.
    Kamp DW; Weitzman SA
    Thorax; 1999 Jul; 54(7):638-52. PubMed ID: 10377212
    [No Abstract]   [Full Text] [Related]  

  • 19. Participation of iron and nitric oxide in the mutagenicity of asbestos in hgprt-, gpt+ Chinese hamster V79 cells.
    Park SH; Aust AE
    Cancer Res; 1998 Mar; 58(6):1144-8. PubMed ID: 9515798
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.