These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 9516109)
1. Test of general relativity and measurement of the lense-thirring effect with two earth satellites. Ciufolini I; Pavlis E; Chieppa F; Fernandes-Vieira E; Perez-Mercader J Science; 1998 Mar; 279(5359):2100-3. PubMed ID: 9516109 [TBL] [Abstract][Full Text] [Related]
2. A confirmation of the general relativistic prediction of the Lense-Thirring effect. Ciufolini I; Pavlis EC Nature; 2004 Oct; 431(7011):958-60. PubMed ID: 15496915 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the Quality of SLR Station Coordinates Determined from Laser Ranging to the LARES Satellite. Schillak S; Lejba P; Michałek P Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498598 [TBL] [Abstract][Full Text] [Related]
4. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model: Measurement of Earth's dragging of inertial frames. Ciufolini I; Paolozzi A; Pavlis EC; Koenig R; Ries J; Gurzadyan V; Matzner R; Penrose R; Sindoni G; Paris C; Khachatryan H; Mirzoyan S Eur Phys J C Part Fields; 2016; 76(3):120. PubMed ID: 27471430 [TBL] [Abstract][Full Text] [Related]
5. Reply to "A comment on "A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model, by I. Ciufolini et al."". Ciufolini I; Pavlis EC; Ries J; Matzner R; Koenig R; Paolozzi A; Sindoni G; Gurzadyan V; Penrose R; Paris C Eur Phys J C Part Fields; 2018; 78(11):880. PubMed ID: 30881204 [TBL] [Abstract][Full Text] [Related]
6. Accurate measurement in the field of the earth of the general-relativistic precession of the LAGEOS II pericenter and new constraints on non-newtonian gravity. Lucchesi DM; Peron R Phys Rev Lett; 2010 Dec; 105(23):231103. PubMed ID: 21231446 [TBL] [Abstract][Full Text] [Related]
7. Lense-Thirring frame dragging induced by a fast-rotating white dwarf in a binary pulsar system. Krishnan VV; Bailes M; van Straten W; Wex N; Freire PCC; Keane EF; Tauris TM; Rosado PA; Bhat NDR; Flynn C; Jameson A; Osłowski S Science; 2020 Jan; 367(6477):577-580. PubMed ID: 32001656 [TBL] [Abstract][Full Text] [Related]
8. Measurement of the Lense-Thirring drag on high-altitude, laser-ranged artificial satellites. Ciufolini I Phys Rev Lett; 1986 Jan; 56(4):278-281. PubMed ID: 10033146 [No Abstract] [Full Text] [Related]
9. A test of general relativity using radio links with the Cassini spacecraft. Bertotti B; Iess L; Tortora P Nature; 2003 Sep; 425(6956):374-6. PubMed ID: 14508481 [TBL] [Abstract][Full Text] [Related]
13. Satellite Laser Ranging for Retrieval of the Local Values of the Love Jagoda M; Rutkowska M; Lejba P; Katzer J; Obuchovski R; Šlikas D Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33266091 [TBL] [Abstract][Full Text] [Related]
14. Can gravity distinguish between Dirac and Majorana neutrinos? Singh D; Mobed N; Papini G Phys Rev Lett; 2006 Jul; 97(4):041101. PubMed ID: 16907562 [TBL] [Abstract][Full Text] [Related]
15. On the modelling and testing of a laboratory-scale Foucault pendulum as a precursor for the design of a high-performance measurement instrument. Cartmell MP; Faller JE; Lockerbie NA; Handous E Proc Math Phys Eng Sci; 2020 Jun; 476(2238):20190680. PubMed ID: 32821234 [TBL] [Abstract][Full Text] [Related]
16. Gravitational Redshift Test Using Eccentric Galileo Satellites. Delva P; Puchades N; Schönemann E; Dilssner F; Courde C; Bertone S; Gonzalez F; Hees A; Le Poncin-Lafitte C; Meynadier F; Prieto-Cerdeira R; Sohet B; Ventura-Traveset J; Wolf P Phys Rev Lett; 2018 Dec; 121(23):231101. PubMed ID: 30576203 [TBL] [Abstract][Full Text] [Related]
17. Observing Lense-Thirring precession in tidal disruption flares. Stone N; Loeb A Phys Rev Lett; 2012 Feb; 108(6):061302. PubMed ID: 22401052 [TBL] [Abstract][Full Text] [Related]
18. Test of the Gravitational Redshift with Galileo Satellites in an Eccentric Orbit. Herrmann S; Finke F; Lülf M; Kichakova O; Puetzfeld D; Knickmann D; List M; Rievers B; Giorgi G; Günther C; Dittus H; Prieto-Cerdeira R; Dilssner F; Gonzalez F; Schönemann E; Ventura-Traveset J; Lämmerzahl C Phys Rev Lett; 2018 Dec; 121(23):231102. PubMed ID: 30576165 [TBL] [Abstract][Full Text] [Related]
19. A test of general relativity from the three-dimensional orbital geometry of a binary pulsar. van Straten W; Bailes M; Britton M; Kulkarni SR; Anderson SB; Manchester RN; Sarkissian J Nature; 2001 Jul; 412(6843):158-60. PubMed ID: 11449265 [TBL] [Abstract][Full Text] [Related]
20. A mechanistic interpretation of relativistic rigid body rotation. Catheline S Sci Rep; 2023 Jun; 13(1):9047. PubMed ID: 37270551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]