BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 9516188)

  • 1. Exercise training increases K+-channel contribution to regulation of coronary arterial tone.
    Bowles DK; Laughlin MH; Sturek M
    J Appl Physiol (1985); 1998 Apr; 84(4):1225-33. PubMed ID: 9516188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of exercise training and hypercholesterolemia on adenosine activation of voltage-dependent K+ channels in coronary arterioles.
    Heaps CL; Jeffery EC; Laine GA; Price EM; Bowles DK
    J Appl Physiol (1985); 2008 Dec; 105(6):1761-71. PubMed ID: 18832757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-sensitive potassium current in isolated canine coronary smooth muscle cells.
    Buljubasic N; Marijic J; Kampine JP; Bosnjak ZJ
    Can J Physiol Pharmacol; 1994 Mar; 72(3):189-98. PubMed ID: 7520826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional role of potassium channels in the vasodilating mechanism of levosimendan in porcine isolated coronary artery.
    Pataricza J; Krassói I; Höhn J; Kun A; Papp JG
    Cardiovasc Drugs Ther; 2003 Mar; 17(2):115-21. PubMed ID: 12975592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of voltage-dependent and Ca(2+)-activated K(+) channels on the regulation of isometric force in porcine coronary artery.
    Shimizu S; Yokoshiki H; Sperelakis N; Paul RJ
    J Vasc Res; 2000; 37(1):16-25. PubMed ID: 10720882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maturation alters the contribution of potassium channels to resting and 5HT-induced tone in small cerebral arteries of the sheep.
    Teng GQ; Nauli SM; Brayden JE; Pearce WJ
    Brain Res Dev Brain Res; 2002 Feb; 133(2):81-91. PubMed ID: 11882339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional role of charybdotoxin-sensitive K+ channels in the resting state of cerebral, coronary and mesenteric arteries of the dog.
    Asano M; Masuzawa-Ito K; Matsuda T; Suzuki Y; Oyama H; Shibuya M; Sugita K
    J Pharmacol Exp Ther; 1993 Dec; 267(3):1277-85. PubMed ID: 7505329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and function of Ca(2+)-activated K+ channels in arteriolar muscle cells.
    Jackson WF; Blair KL
    Am J Physiol; 1998 Jan; 274(1):H27-34. PubMed ID: 9458848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gender-specific K(+)-channel contribution to adenosine-induced relaxation in coronary arterioles.
    Heaps CL; Bowles DK
    J Appl Physiol (1985); 2002 Feb; 92(2):550-8. PubMed ID: 11796663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vasoconstrictor responses of coronary resistance arteries in exercise-trained pigs.
    Laughlin MH; Muller JM
    J Appl Physiol (1985); 1998 Mar; 84(3):884-9. PubMed ID: 9480947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercise training increases L-type calcium current density in coronary smooth muscle.
    Bowles DK; Hu Q; Laughlin MH; Sturek M
    Am J Physiol; 1998 Dec; 275(6):H2159-69. PubMed ID: 9843816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise training increases basal tone in arterioles distal to chronic coronary occlusion.
    Heaps CL; Mattox ML; Kelly KA; Meininger CJ; Parker JL
    Am J Physiol Heart Circ Physiol; 2006 Mar; 290(3):H1128-35. PubMed ID: 16243909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane potassium currents in human radial artery and their regulation by nitric oxide donor.
    Zhang Y; Tazzeo T; Chu V; Janssen LJ
    Cardiovasc Res; 2006 Jul; 71(2):383-92. PubMed ID: 16716281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of potassium channel blockers on resting tone in isolated coronary arteries.
    O'Rourke ST
    J Cardiovasc Pharmacol; 1996 May; 27(5):636-42. PubMed ID: 8859932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of adenosine-induced coronary vasodilation by block of large-conductance Ca(2+)-activated K+ channels.
    Cabell F; Weiss DS; Price JM
    Am J Physiol; 1994 Oct; 267(4 Pt 2):H1455-60. PubMed ID: 7943391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potassium channels in human umbilical artery cells.
    Milesi V; Raingo J; Rebolledo A; Grassi de Gende AO
    J Soc Gynecol Investig; 2003 Sep; 10(6):339-46. PubMed ID: 12969776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consequences of reduced production of NO on vascular reactivity of porcine coronary arteries after angioplasty: importance of EDHF.
    Thollon C; Fournet-Bourguignon MP; Saboureau D; Lesage L; Reure H; Vanhoutte PM; Vilaine JP
    Br J Pharmacol; 2002 Aug; 136(8):1153-61. PubMed ID: 12163348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of exercise training on responses of peripheral and visceral arteries in swine.
    McAllister RM; Kimani JK; Webster JL; Parker JL; Laughlin MH
    J Appl Physiol (1985); 1996 Jan; 80(1):216-25. PubMed ID: 8847306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of delayed rectifier K+ currents in rabbit coronary artery cells near resting membrane potential.
    Ishikawa T; Eckman DM; Keef KD
    Can J Physiol Pharmacol; 1997 Sep; 75(9):1116-22. PubMed ID: 9365823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelin-1 sensitivity of porcine coronary arteries is reduced by exercise training and is gender dependent.
    Jones AW; Rubin LJ; Magliola L
    J Appl Physiol (1985); 1999 Sep; 87(3):1172-7. PubMed ID: 10484592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.