These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9517011)

  • 1. Application of Kohonen Neural Networks in classification of biologically active compounds.
    Kirew DB; Chretien JR; Bernard P; Ros F
    SAR QSAR Environ Res; 1998; 8(1-2):93-107. PubMed ID: 9517011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A chemometric study of megazol derivatives with activity against Trypanosoma equiperdum.
    Rosselli FP; Albuquerque CN; Da Silva AB
    SAR QSAR Environ Res; 2006 Dec; 17(6):533-47. PubMed ID: 17162385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based classification of active and inactive estrogenic compounds by decision tree, LVQ and kNN methods.
    Asikainen A; Kolehmainen M; Ruuskanen J; Tuppurainen K
    Chemosphere; 2006 Jan; 62(4):658-73. PubMed ID: 15992856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study on the antipicornavirus activity of flavonoid compounds (flavones) by using quantum chemical and chemometric methods.
    Souza J; Molfetta FA; Honório KM; Santos RH; da Silva AB
    J Chem Inf Comput Sci; 2004; 44(3):1153-61. PubMed ID: 15154785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps.
    Marrero-Ponce Y; Iyarreta-Veitía M; Montero-Torres A; Romero-Zaldivar C; Brandt CA; Avila PE; Kirchgatter K; Machado Y
    J Chem Inf Model; 2005; 45(4):1082-100. PubMed ID: 16045304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structure-activity relationship study of quinone compounds with trypanocidal activity.
    Molfetta FA; Bruni AT; Honório KM; da Silva AB
    Eur J Med Chem; 2005 Apr; 40(4):329-38. PubMed ID: 15804532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustering and rule-based classifications of chemical structures evaluated in the biological activity space.
    Schuffenhauer A; Brown N; Ertl P; Jenkins JL; Selzer P; Hamon J
    J Chem Inf Model; 2007; 47(2):325-36. PubMed ID: 17286395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of Self-Organizing Map artificial neural networks for the classification of sediment quality.
    Alvarez-Guerra M; González-Piñuela C; Andrés A; Galán B; Viguri JR
    Environ Int; 2008 Aug; 34(6):782-90. PubMed ID: 18313753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "In-house likeness": comparison of large compound collections using artificial neural networks.
    Muresan S; Sadowski J
    J Chem Inf Model; 2005; 45(4):888-93. PubMed ID: 16045282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ANN-QSAR model of drug-binding to human serum albumin.
    Deeb O; Hemmateenejad B
    Chem Biol Drug Des; 2007 Jul; 70(1):19-29. PubMed ID: 17630991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification and source determination of medium petroleum distillates by chemometric and artificial neural networks: a self organizing feature approach.
    Mat-Desa WN; Ismail D; NicDaeid N
    Anal Chem; 2011 Oct; 83(20):7745-54. PubMed ID: 21919512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico log P prediction for a large data set with support vector machines, radial basis neural networks and multiple linear regression.
    Chen HF
    Chem Biol Drug Des; 2009 Aug; 74(2):142-7. PubMed ID: 19549084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive classification of two-dimensional gel electrophoretic spot patterns by neural networks and cluster analysis.
    Vohradský J
    Electrophoresis; 1997 Dec; 18(15):2749-54. PubMed ID: 9504806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neural network based classification scheme for cytotoxicity predictions:Validation on 30,000 compounds.
    Molnár L; Keseru GM; Papp A; Lorincz Z; Ambrus G; Darvas F
    Bioorg Med Chem Lett; 2006 Feb; 16(4):1037-9. PubMed ID: 16288868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of patients with congestive heart failure using different neural networks approaches.
    Elfadil N; Hossen A
    Technol Health Care; 2009; 17(4):305-21. PubMed ID: 19822947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three new consensus QSAR models for the prediction of Ames genotoxicity.
    Votano JR; Parham M; Hall LH; Kier LB; Oloff S; Tropsha A; Xie Q; Tong W
    Mutagenesis; 2004 Sep; 19(5):365-77. PubMed ID: 15388809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Principal components analysis competitive learning.
    López-Rubio E; Ortiz-de-Lazcano-Lobato JM; Muñoz-Pérez J; Gómez-Ruiz JA
    Neural Comput; 2004 Nov; 16(11):2459-81. PubMed ID: 15476607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of unsupervised and supervised artificial neural networks for the identification of lactic acid bacteria on the basis of SDS-PAGE patterns of whole cell proteins.
    Piraino P; Ricciardi A; Salzano G; Zotta T; Parente E
    J Microbiol Methods; 2006 Aug; 66(2):336-46. PubMed ID: 16480784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined electronic-topological and neural networks study of some hydroxysemicarbazides as potential antitumor agents.
    Kandemirli F; Shvets N; Kovalishyn V; Dimoglo A
    J Mol Graph Model; 2006 Sep; 25(1):30-6. PubMed ID: 16310387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extension of mixture-of-experts networks for binary classification of hierarchical data.
    Ng SK; McLachlan GJ
    Artif Intell Med; 2007 Sep; 41(1):57-67. PubMed ID: 17629686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.