These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 9517181)

  • 1. [Numerical simulation of orthodontic tooth movements using the finite element method (FEM)].
    Bourauel C; Kobe D; Vollmer D; Drescher D
    Biomed Tech (Berl); 1997; 42 Suppl():339-40. PubMed ID: 9517181
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of material variation on the biomechanical behaviour of orthodontic fixed appliances: a finite element analysis.
    Papageorgiou SN; Keilig L; Hasan I; Jäger A; Bourauel C
    Eur J Orthod; 2016 Jun; 38(3):300-7. PubMed ID: 26174769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A numerical simulation of tooth movement produced by molar uprighting spring.
    Kojima Y; Mizuno T; Fukui H
    Am J Orthod Dentofacial Orthop; 2007 Nov; 132(5):630-8. PubMed ID: 18005837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element analysis of the effect of power arm locations on tooth movement in extraction space closure with miniscrew anchorage in customized lingual orthodontic treatment.
    Feng Y; Kong WD; Cen WJ; Zhou XZ; Zhang W; Li QT; Guo HY; Yu JW
    Am J Orthod Dentofacial Orthop; 2019 Aug; 156(2):210-219. PubMed ID: 31375231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical effect of abutment on stability of orthodontic mini-implant. A finite element analysis.
    Motoyoshi M; Yano S; Tsuruoka T; Shimizu N
    Clin Oral Implants Res; 2005 Aug; 16(4):480-5. PubMed ID: 16117774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element-based force/moment-driven simulation of orthodontic tooth movement.
    Geiger M
    Comput Methods Biomech Biomed Engin; 2013; 16(6):639-47. PubMed ID: 22292517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specialized spring design in segmented edgewise orthodontics.
    Mazza D; Mazza M
    Am J Orthod Dentofacial Orthop; 1997 Dec; 112(6):684-93. PubMed ID: 9423702
    [No Abstract]   [Full Text] [Related]  

  • 8. A finite element simulation of initial movement, orthodontic movement, and the centre of resistance of the maxillary teeth connected with an archwire.
    Kojima Y; Fukui H
    Eur J Orthod; 2014 Jun; 36(3):255-61. PubMed ID: 22051537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Determination of the force system of fixed orthodontic appliances].
    Seidenbusch W; Manhartsberger C
    Biomed Tech (Berl); 1990; 35 Suppl 2():129-30. PubMed ID: 2223956
    [No Abstract]   [Full Text] [Related]  

  • 10. Scientific use of the finite element method in Orthodontics.
    Knop L; Gandini LG; Shintcovsk RL; Gandini MR
    Dental Press J Orthod; 2015; 20(2):119-25. PubMed ID: 25992996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evaluation of the biomechanical response of the tooth and periodontium to orthodontic forces in adolescent and adult subjects.
    Tanne K; Yoshida S; Kawata T; Sasaki A; Knox J; Jones ML
    Br J Orthod; 1998 May; 25(2):109-15. PubMed ID: 9668993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer simulation of orthodontic tooth movement using CT image-based voxel finite element models with the level set method.
    Hasegawa M; Adachi T; Takano-Yamamoto T
    Comput Methods Biomech Biomed Engin; 2016; 19(5):474-83. PubMed ID: 26218656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational design and engineering of polymeric orthodontic aligners.
    Barone S; Paoli A; Razionale AV; Savignano R
    Int J Numer Method Biomed Eng; 2017 Aug; 33(8):e2839. PubMed ID: 27704706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the power arm in bringing about bodily movement using finite element analysis.
    Ansari TA; Mascarenhas R; Husain A; Salim M
    Orthodontics (Chic.); 2011; 12(4):318-29. PubMed ID: 22299105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apical stress distribution on maxillary central incisor during various orthodontic tooth movements by varying cemental and two different periodontal ligament thicknesses: a FEM study.
    Vikram NR; Senthil Kumar KS; Nagachandran KS; Hashir YM
    Indian J Dent Res; 2012; 23(2):213-20. PubMed ID: 22945712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulations of canine retraction with T-loop springs based on the updated moment-to-force ratio.
    Kojima Y; Fukui H
    Eur J Orthod; 2012 Feb; 34(1):10-8. PubMed ID: 21135033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Torque control of the maxillary incisors in lingual and labial orthodontics: a 3-dimensional finite element analysis.
    Liang W; Rong Q; Lin J; Xu B
    Am J Orthod Dentofacial Orthop; 2009 Mar; 135(3):316-22. PubMed ID: 19268829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-vector mechanics.
    Fiorelli G; Melsen B; Modica C
    Prog Orthod; 2003; 4(2):62-73. PubMed ID: 14985798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-dependent mechanical behaviour of the periodontal ligament.
    van Driel WD; van Leeuwen EJ; Von den Hoff JW; Maltha JC; Kuijpers-Jagtman AM
    Proc Inst Mech Eng H; 2000; 214(5):497-504. PubMed ID: 11109857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stresses induced by edgewise appliances in the periodontal ligament--a finite element study.
    McGuinness N; Wilson AN; Jones M; Middleton J; Robertson NR
    Angle Orthod; 1992; 62(1):15-22. PubMed ID: 1554158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.