These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 9517489)

  • 21. Transferrin-bound and transferrin free iron uptake by cultured rat astrocytes.
    Qian ZM; Liao QK; To Y; Ke Y; Tsoi YK; Wang GF; Ho KP
    Cell Mol Biol (Noisy-le-grand); 2000 May; 46(3):541-8. PubMed ID: 10872741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine.
    Rudolph MC; McManaman JL; Phang T; Russell T; Kominsky DJ; Serkova NJ; Stein T; Anderson SM; Neville MC
    Physiol Genomics; 2007 Feb; 28(3):323-36. PubMed ID: 17105756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Induction of transcripts derived from promoter III of the acetyl-CoA carboxylase-alpha gene in mammary gland is associated with recruitment of SREBP-1 to a region of the proximal promoter defined by a DNase I hypersensitive site.
    Barber MC; Vallance AJ; Kennedy HT; Travers MT
    Biochem J; 2003 Oct; 375(Pt 2):489-501. PubMed ID: 12871210
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Copper transport to mammary gland and milk during lactation in rats.
    Donley SA; Ilagan BJ; Rim H; Linder MC
    Am J Physiol Endocrinol Metab; 2002 Oct; 283(4):E667-75. PubMed ID: 12217883
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective transfer of plasma proteins across mammary gland in lactating mouse.
    Gitlin JD; Gitlin JI; Gitlin D
    Am J Physiol; 1976 Jun; 230(6):1594-1602. PubMed ID: 820205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hyperthyroidism and production of precocious involution in the mammary glands of lactating rats.
    Varas SM; Muñoz EM; Hapon MB; Aguilera Merlo CI; Giménez MS; Jahn GA
    Reproduction; 2002 Nov; 124(5):691-702. PubMed ID: 12417008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nuclear targeting of stanniocalcin to mammary gland alveolar cells during pregnancy and lactation.
    Hasilo CP; McCudden CR; Gillespie JR; James KA; Hirvi ER; Zaidi D; Wagner GF
    Am J Physiol Endocrinol Metab; 2005 Oct; 289(4):E634-42. PubMed ID: 16150955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cadmium-induced disturbances in lactating mammary glands of mice.
    Ohrvik H; Yoshioka M; Oskarsson A; Tallkvist J
    Toxicol Lett; 2006 Jul; 164(3):207-13. PubMed ID: 16436318
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics and thermodynamics of metal-loaded transferrins: transferrin receptor 1 interactions.
    Ha-Duong NT; Hémadi M; Chikh Z; Chahine JM
    Biochem Soc Trans; 2008 Dec; 36(Pt 6):1422-6. PubMed ID: 19021568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of serum iron concentration on iron secretion into mouse milk.
    Zhang P; Sawicki V; Lewis A; Hanson L; Monks J; Neville MC
    J Physiol; 2000 Feb; 522 Pt 3(Pt 3):479-91. PubMed ID: 10713971
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lactoferrin (Lf): Retinoid interactions in the mammary glands of transgenic mice overexpressing human Lf.
    Baumrucker CR; Saurer S; Blum JW; Jungi T; Friis RR
    Mol Cell Endocrinol; 2006 Jun; 251(1-2):56-66. PubMed ID: 16621235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overexpression and forced activation of stat5 in mammary gland of transgenic mice promotes cellular proliferation, enhances differentiation, and delays postlactational apoptosis.
    Iavnilovitch E; Groner B; Barash I
    Mol Cancer Res; 2002 Nov; 1(1):32-47. PubMed ID: 12496367
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distribution of injected iron 59 and manganese 54 in hypotransferrinemic mice.
    Dickinson TK; Devenyi AG; Connor JR
    J Lab Clin Med; 1996 Sep; 128(3):270-8. PubMed ID: 8783634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in secretory cell turnover, and mitochondrial oxidative damage in the mouse mammary gland during a single prolonged lactation cycle suggest the possibility of accelerated cellular aging.
    Hadsell DL; Torres D; George J; Capuco AV; Ellis SE; Fiorotto ML
    Exp Gerontol; 2006 Mar; 41(3):271-81. PubMed ID: 16442254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sites of formation of the serum proteins transferrin and hemopexin.
    Thorbecke GJ; Liem HH; Knight S; Cox K; Muller-Eberhard U
    J Clin Invest; 1973 Mar; 52(3):725-31. PubMed ID: 4119469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endocytosis and intracellular transport of transferrin across the lactating rabbit mammary epithelial cell.
    Seddiki T; Delpal S; Ollivier-Bousquet M
    J Histochem Cytochem; 1992 Oct; 40(10):1501-10. PubMed ID: 1527373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transferrin receptor and ferritin levels during murine mammary gland development.
    Schulman HM; Ponka P; Wilczynska A; Gauthier Y; Shyamala G
    Biochim Biophys Acta; 1989 Jan; 1010(1):1-6. PubMed ID: 2642388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative metabolism of 54Mn, 59Fe, 60Co and 65Zn incorporated into Chlorella and in inorganic form in rats.
    Inaba J; Nishimura Y; Ichikawa R
    Health Phys; 1980 Oct; 39(4):611-7. PubMed ID: 7429866
    [No Abstract]   [Full Text] [Related]  

  • 39. The binding and transport of alternative metals by transferrin.
    Vincent JB; Love S
    Biochim Biophys Acta; 2012 Mar; 1820(3):362-78. PubMed ID: 21782896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of thiosalicylic and hydroxyethylethylenediaminetriacetic acids on the absorption and excretion of 54Mn and 65Zn in the duodenally dosed sheep.
    Ivan M; Veira DM; Hidiroglou M
    Can J Physiol Pharmacol; 1982 Dec; 60(12):1514-8. PubMed ID: 6819885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.