These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9517538)

  • 1. Structural diversity of sequentially identical subsequences of proteins: identical octapeptides can have different conformations.
    Sudarsanam S
    Proteins; 1998 Feb; 30(3):228-31. PubMed ID: 9517538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origins of structural diversity within sequentially identical hexapeptides.
    Cohen BI; Presnell SR; Cohen FE
    Protein Sci; 1993 Dec; 2(12):2134-45. PubMed ID: 8298461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Search for identical octapeptides in unrelated proteins: Structural plasticity revisited.
    Saravanan KM; Selvaraj S
    Biopolymers; 2012; 98(1):11-26. PubMed ID: 23325556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns and conformations of commonly occurring supersecondary structures (basic motifs) in protein data bank.
    Sun Z; Jiang B
    J Protein Chem; 1996 Oct; 15(7):675-90. PubMed ID: 8968959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detailed protein sequence alignment based on Spectral Similarity Score (SSS).
    Gupta K; Thomas D; Vidya SV; Venkatesh KV; Ramakumar S
    BMC Bioinformatics; 2005 Apr; 6():105. PubMed ID: 15850477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computation of conformational entropy from protein sequences using the machine-learning method--application to the study of the relationship between structural conservation and local structural stability.
    Huang SW; Hwang JK
    Proteins; 2005 Jun; 59(4):802-9. PubMed ID: 15828008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Search and analysis of identical reverse octapeptides in unrelated proteins.
    Saravanan KM; Selvaraj S
    Genomics Proteomics Bioinformatics; 2013 Apr; 11(2):114-21. PubMed ID: 23523652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A vector projection method for predicting supersecondary motifs.
    Sun ZR; Zhang CT; Wu FH; Peng LW
    J Protein Chem; 1996 Nov; 15(8):721-9. PubMed ID: 9008295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of residue conformations in peptides in Cambridge structural database and protein-peptide structural complexes.
    Raghavender US
    Chem Biol Drug Des; 2017 Mar; 89(3):428-442. PubMed ID: 27589215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cis peptide bonds in proteins: residues involved, their conformations, interactions and locations.
    Pal D; Chakrabarti P
    J Mol Biol; 1999 Nov; 294(1):271-88. PubMed ID: 10556045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The complex folding pathways of protein A suggest a multiple-funnelled energy landscape.
    St-Pierre JF; Mousseau N; Derreumaux P
    J Chem Phys; 2008 Jan; 128(4):045101. PubMed ID: 18248008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do rotamer libraries reproduce the side-chain conformations of peptidic ligands from the PDB?
    Pupo A; Moreno E
    J Mol Graph Model; 2009 Jan; 27(5):611-9. PubMed ID: 19028123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation biases of amino acids based on tripeptide microenvironment from PDB database.
    Yang J; Dong XC; Leng Y
    J Theor Biol; 2006 Jun; 240(3):374-84. PubMed ID: 16290902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary structures without backbone: an analysis of backbone mimicry by polar side chains in protein structures.
    Eswar N; Ramakrishnan C
    Protein Eng; 1999 Jun; 12(6):447-55. PubMed ID: 10388841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ChSeq: A database of chameleon sequences.
    Li W; Kinch LN; Karplus PA; Grishin NV
    Protein Sci; 2015 Jul; 24(7):1075-86. PubMed ID: 25970262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 3D sequence-independent representation of the protein data bank.
    Fischer D; Tsai CJ; Nussinov R; Wolfson H
    Protein Eng; 1995 Oct; 8(10):981-97. PubMed ID: 8771179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-protein amino acids in the design of secondary structure scaffolds.
    Mahalakshmi R; Balaram P
    Methods Mol Biol; 2006; 340():71-94. PubMed ID: 16957333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing amino acids to determine the local conformations of peptides.
    Burgess AW
    Proc Natl Acad Sci U S A; 1994 Mar; 91(7):2649-53. PubMed ID: 8146170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tetrapeptide-based method for polyproline II-type secondary structure prediction.
    Vlasov PK; Vlasova AV; Tumanyan VG; Esipova NG
    Proteins; 2005 Dec; 61(4):763-8. PubMed ID: 16231310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice models for proteins reveal multiple folding nuclei for nucleation-collapse mechanism.
    Klimov DK; Thirumalai D
    J Mol Biol; 1998 Sep; 282(2):471-92. PubMed ID: 9735420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.