These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9518151)

  • 1. Study of the metabolism of spiramycin in pig liver.
    Mourier P; Brun A
    J Chromatogr B Biomed Sci Appl; 1997 Dec; 704(1-2):197-205. PubMed ID: 9518151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural identification of bitespiramycin metabolites in rat: a single oral dose study.
    Shi XG; Fawcett JP; Chen XY; Zhong DF
    Xenobiotica; 2005 Apr; 35(4):343-58. PubMed ID: 16019956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid catalysed degradation of some spiramycin derivatives found in the antibiotic bitespiramycin.
    Shi X; Zhang S; Fawcett JP; Zhong D
    J Pharm Biomed Anal; 2004 Nov; 36(3):593-600. PubMed ID: 15522535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of spiramycin and neospiramycin antibiotic residues in raw milk using LC/ESI-MS/MS and solid-phase extraction.
    Wang J; Leung D
    J Sep Sci; 2009 Feb; 32(4):681-8. PubMed ID: 19165836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacodynamics and pharmacokinetics of spiramycin and their clinical significance.
    Brook I
    Clin Pharmacokinet; 1998 Apr; 34(4):303-10. PubMed ID: 9571302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two novel spiramycins obtained from commercial samples: isolation and elucidation of structure.
    Liu L; Roets E; Busson R; Vankeerberghen A; Janssen G; Hoogmartens J
    J Antibiot (Tokyo); 1996 Apr; 49(4):398-401. PubMed ID: 8642006
    [No Abstract]   [Full Text] [Related]  

  • 7. Identification of 4″-isovaleryl-spiramycin III produced by Bacillus sp. fmbJ.
    Deng Y; Ju Y; Lu Z; Lu F; Yan D; Bie X
    Arch Microbiol; 2014 Feb; 196(2):87-95. PubMed ID: 24356910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic biodegradation of spiramycin I and characterization of its new metabolites.
    Yao J; Shao L; Chen D; Liu P; Zhang Y
    Biosci Biotechnol Biochem; 2017 May; 81(5):1051-1054. PubMed ID: 28095730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved liquid chromatographic method for quality control of spiramycin using superficially porous particles.
    Lin Q; Kahsay G; de Waal T; Zhu P; Tam M; Teughels R; Wang W; Van Schepdael A; Adams E
    J Pharm Biomed Anal; 2018 Feb; 149():57-65. PubMed ID: 29101816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiresidue chromatographic method for the determination of macrolide residues in muscle by high-performance liquid chromatography with UV detection.
    Juhel-Gaugain M; Anger B; Laurentie M
    J AOAC Int; 1999; 82(5):1046-53. PubMed ID: 10513006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical modification of spiramycins. II. Synthesis and antimicrobial activity of 4'-deoxy derivatives of neospiramycin I and their 12-(Z)-isomers.
    Sano H; Inoue M; Omura S
    J Antibiot (Tokyo); 1984 Jul; 37(7):738-49. PubMed ID: 6469868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of impurities in spiramycin by liquid chromatography/ion trap mass spectrometry.
    Pendela M; Govaerts C; Diana J; Hoogmartens J; Van Schepdael A; Adams E
    Rapid Commun Mass Spectrom; 2007; 21(4):599-613. PubMed ID: 17262895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The metabolism of avermectin-H2B1a and -H2B1b by pig liver microsomes.
    Chiu SH; Sestokas E; Taub R; Smith JL; Arison B; Lu AY
    Drug Metab Dispos; 1984; 12(4):464-9. PubMed ID: 6148214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1H-NMR and 13C-NMR spectral assignments of spiramycins I and III.
    Ramu K; Shringarpure S; Cooperwood S; Beale JM; Williams JS
    Pharm Res; 1994 Mar; 11(3):458-65. PubMed ID: 8008717
    [No Abstract]   [Full Text] [Related]  

  • 15. Biotransformation of furaltadone by pig hepatocytes and Salmonella typhimurium TA 100 bacteria, and the formation of protein-bound metabolites.
    Hoogenboom LA; Polman TH; Lommen A; Huveneers MB; van Rhijn J
    Xenobiotica; 1994 Aug; 24(8):713-27. PubMed ID: 7839695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacokinetics and tissue residues of spiramycin in cattle after intramuscular administration of multiple doses.
    Sanders P; Guillot P; Dagorn M; Moulin G; Delépine B; Mourot D
    Am J Vet Res; 1994 Mar; 55(3):358-62. PubMed ID: 8192258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Al
    Li Z; Hu F; Ye R; Lv H; Zeng J
    Prep Biochem Biotechnol; 2017 May; 47(5):481-488. PubMed ID: 28278108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Determination of five macrolide antibiotic residues in royal jelly samples by using high performance liquid chromatography tandem mass spectrometry].
    Xie W; Ding H; Xi J; Qian Y; Huang L
    Se Pu; 2007 May; 25(3):404-7. PubMed ID: 17679440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous multiresidue determination of metronidazole and spiramycin in fish muscle using high performance liquid chromatography with UV detection.
    Maher HM; Youssef RM; Khalil RH; El-Bahr SM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Dec; 876(2):175-81. PubMed ID: 19013111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between the antibiotic spiramycin and a ribosomal complex active in peptide bond formation.
    Dinos G; Synetos D; Coutsogeorgopoulos C
    Biochemistry; 1993 Oct; 32(40):10638-47. PubMed ID: 8399209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.