BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 9518180)

  • 1. Simple and rapid method for determining nicotinamide adenine dinucleotide synthetase activity by high-performance liquid chromatography.
    Sakai T; Morita Y; Araki T; Masuyama Y
    J Chromatogr B Biomed Sci Appl; 1997 Dec; 704(1-2):77-81. PubMed ID: 9518180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of Escherichia coli NAD synthetase with substrates and products reveal mechanistic rearrangements.
    Jauch R; Humm A; Huber R; Wahl MC
    J Biol Chem; 2005 Apr; 280(15):15131-40. PubMed ID: 15699042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro characterization of the NAD+ synthetase NadE1 from Herbaspirillum seropedicae.
    Laskoski K; Santos AR; Bonatto AC; Pedrosa FO; Souza EM; Huergo LF
    Arch Microbiol; 2016 May; 198(4):307-13. PubMed ID: 26802007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial purification and properties of nicotinamide adenine dinucleotide synthetase from human erythrocytes: evidence that enzyme activity is a sensitive indicator of lead exposure.
    Zerez CR; Wong MD; Tanaka KR
    Blood; 1990 Apr; 75(7):1576-82. PubMed ID: 2107886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel deamido-NAD+-binding site revealed by the trapped NAD-adenylate intermediate in the NAD+ synthetase structure.
    Rizzi M; Bolognesi M; Coda A
    Structure; 1998 Sep; 6(9):1129-40. PubMed ID: 9753692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamine-dependent NAD+ synthetase. How a two-domain, three-substrate enzyme avoids waste.
    Wojcik M; Seidle HF; Bieganowski P; Brenner C
    J Biol Chem; 2006 Nov; 281(44):33395-402. PubMed ID: 16954203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of oxidized nicotinamide adenine dinucleotide (NAD(+)) analogues using a high-pressure-liquid-chromatography-based NAD(+)-glycohydrolase assay and comparison with fluorescence-based measurements.
    Yates SP; Merrill AR
    Anal Biochem; 2005 May; 340(1):41-51. PubMed ID: 15802128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamine versus ammonia utilization in the NAD synthetase family.
    De Ingeniis J; Kazanov MD; Shatalin K; Gelfand MS; Osterman AL; Sorci L
    PLoS One; 2012; 7(6):e39115. PubMed ID: 22720044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate measurement of nicotinamide adenine dinucleotide (NAD⁺) with high-performance liquid chromatography.
    Yoshino J; Imai S
    Methods Mol Biol; 2013; 1077():203-15. PubMed ID: 24014409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of active-site loops in NH3-dependent NAD+ synthetase from Bacillus subtilis.
    Devedjiev Y; Symersky J; Singh R; Jedrzejas M; Brouillette C; Brouillette W; Muccio D; Chattopadhyay D; DeLucas L
    Acta Crystallogr D Biol Crystallogr; 2001 Jun; 57(Pt 6):806-12. PubMed ID: 11375500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel localization of CD38 in perivascular sympathetic nerve terminals.
    Smyth LM; Breen LT; Yamboliev IA; Mutafova-Yambolieva VN
    Neuroscience; 2006; 139(4):1467-77. PubMed ID: 16580146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining NAD synthesis in erythrocytes.
    Micheli V; Sestini S
    Methods Enzymol; 1997; 280():211-21. PubMed ID: 9211316
    [No Abstract]   [Full Text] [Related]  

  • 13. An ancestral glutamine-dependent NAD(+) synthetase revealed by poor kinetic synergism.
    Resto M; Yaffe J; Gerratana B
    Biochim Biophys Acta; 2009 Nov; 1794(11):1648-53. PubMed ID: 19647806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme activities leading to NAD synthesis in human lymphocytes.
    Sestini S; Jacomelli G; Pescaglini M; Micheli V; Pompucci G
    Arch Biochem Biophys; 2000 Jul; 379(2):277-82. PubMed ID: 10898945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of nicotinamide-adenine dinucleotide and thiazole-4-carboxamide-adenine dinucleotide in human leukocytes by reversed-phase high-performance liquid chromatography.
    Saunders PP; Alvarez E; Kantarjian HM
    J Chromatogr; 1992 May; 577(1):37-41. PubMed ID: 1400744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying ethanol by high performance liquid chromatography with precolumn enzymatic conversion and derivatization with fluorimetric detection.
    Chen HM; Peterson CM
    Alcohol; 1994; 11(6):577-82. PubMed ID: 7865161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An enzymatic cycling assay for nicotinic acid adenine dinucleotide phosphate using NAD synthetase.
    Yamaguchi F; Ohshima T; Sakuraba H
    Anal Biochem; 2007 May; 364(2):97-103. PubMed ID: 17395143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assay of nicotinamide deamidase activity using high-performance liquid chromatography.
    Oishi M; Ogasawara Y; Ishii K; Tanabe S
    J Chromatogr B Biomed Sci Appl; 1998 Dec; 720(1-2):59-64. PubMed ID: 9892067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic activities affecting exogenous nicotinamide adenine dinucleotide in human skin fibroblasts.
    Aleo MF; Sestini S; Pompucci G; Preti A
    J Cell Physiol; 1996 Apr; 167(1):173-6. PubMed ID: 8698835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance liquid chromatography determination of enzyme activities in the presence of small amounts of product.
    Pace M; Mauri P; Pietta P; Agnellini D
    Anal Biochem; 1989 Feb; 176(2):437-9. PubMed ID: 2545113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.