These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 9518266)

  • 1. Identification and connections of inspiratory premotor neurons in songbirds and budgerigar.
    Reinke H; Wild JM
    J Comp Neurol; 1998 Feb; 391(2):147-63. PubMed ID: 9518266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution and connections of inspiratory premotor neurons in the brainstem of the pigeon (Columba livia).
    Reinke H; Wild JM
    J Comp Neurol; 1997 Mar; 379(3):347-62. PubMed ID: 9067829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Descending projections of the songbird nucleus robustus archistriatalis.
    Wild JM
    J Comp Neurol; 1993 Dec; 338(2):225-41. PubMed ID: 8308169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Projections of the dorsomedial nucleus of the intercollicular complex (DM) in relation to respiratory-vocal nuclei in the brainstem of pigeon (Columba livia) and zebra finch (Taeniopygia guttata).
    Wild JM; Li D; Eagleton C
    J Comp Neurol; 1997 Jan; 377(3):392-413. PubMed ID: 8989654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bilateral feedback projections to the forebrain in the premotor network for singing in zebra finches.
    Striedter GF; Vu ET
    J Neurobiol; 1998 Jan; 34(1):27-40. PubMed ID: 9469616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual and somatosensory inputs to the avian song system via nucleus uvaeformis (Uva) and a comparison with the projections of a similar thalamic nucleus in a nonsongbird, Columba livia.
    Wild JM
    J Comp Neurol; 1994 Nov; 349(4):512-35. PubMed ID: 7860787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connections of the caudal ventrolateral medullary reticular formation in the cat brainstem.
    Stocker SD; Steinbacher BC; Balaban CD; Yates BJ
    Exp Brain Res; 1997 Sep; 116(2):270-82. PubMed ID: 9348126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rostral wulst in passerine birds. I. Origin, course, and terminations of an avian pyramidal tract.
    Wild JM; Williams MN
    J Comp Neurol; 2000 Jan; 416(4):429-50. PubMed ID: 10660876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expiratory neurons of the Bötzinger Complex in the rat: a morphological study following intracellular labeling with biocytin.
    Bryant TH; Yoshida S; de Castro D; Lipski J
    J Comp Neurol; 1993 Sep; 335(2):267-82. PubMed ID: 8227518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Avian nucleus retroambigualis: cell types and projections to other respiratory-vocal nuclei in the brain of the zebra finch (Taeniopygia guttata).
    Wild JM; Kubke MF; Mooney R
    J Comp Neurol; 2009 Feb; 512(6):768-83. PubMed ID: 19067354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiology of neuronal subtypes in the respiratory-vocal integration nucleus retroamigualis of the male zebra finch.
    Kubke MF; Yazaki-Sugiyama Y; Mooney R; Wild JM
    J Neurophysiol; 2005 Oct; 94(4):2379-90. PubMed ID: 15928060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural evidence for direct excitatory retroambiguus projections to cutaneous trunci and abdominal external oblique muscle motoneurons in the cat.
    Boers J; Kirkwood PA; de Weerd H; Holstege G
    Brain Res Bull; 2006 Jan; 68(4):249-56. PubMed ID: 16377430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural pathways for bilateral vocal control in songbirds.
    Wild JM; Williams MN; Suthers RA
    J Comp Neurol; 2000 Jul; 423(3):413-26. PubMed ID: 10870082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connections of a motor cortical region in zebra finches: relation to pathways for vocal learning.
    Bottjer SW; Brady JD; Cribbs B
    J Comp Neurol; 2000 May; 420(2):244-60. PubMed ID: 10753310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain stem integration of vocalization: role of the nucleus retroambigualis.
    Zhang SP; Bandler R; Davis PJ
    J Neurophysiol; 1995 Dec; 74(6):2500-12. PubMed ID: 8747209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory neuron subpopulations and pathways potentially involved in the reactivation of phrenic motoneurons after C2 hemisection.
    Boulenguez P; Gauthier P; Kastner A
    Brain Res; 2007 May; 1148():96-104. PubMed ID: 17379194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Columnar organization of estrogen receptor-alpha immunoreactive neurons in the periaqueductal gray projecting to the nucleus para-retroambiguus in the caudal brainstem of the female golden hamster.
    Gerrits PO; Krukerink M; Veening JG
    Neuroscience; 2009 Jun; 161(2):459-74. PubMed ID: 19321152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The auditory-vocal-respiratory axis in birds.
    Wild JM
    Brain Behav Evol; 1994; 44(4-5):192-209. PubMed ID: 7842281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anatomical study of the final common pathway for vocalization in the cat.
    Holstege G
    J Comp Neurol; 1989 Jun; 284(2):242-52. PubMed ID: 2754035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thyrotropin-releasing hormone immunoreactive boutons form close appositions with medullary expiratory neurons in the rat.
    Sun QJ; Llewellyn-Smith I; Minson J; Arnolda L; Chalmers J; Pilowsky P
    Brain Res; 1996 Apr; 715(1-2):136-44. PubMed ID: 8739632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.