These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 9518614)

  • 1. Chronopotentiometric studies of electroporation of bilayer lipid membranes.
    Kalinowski S; Ibron G; Bryl K; Figaszewski Z
    Biochim Biophys Acta; 1998 Mar; 1369(2):204-12. PubMed ID: 9518614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of cholesterol on electroporation of bilayer lipid membranes: chronopotentiometric studies.
    Koronkiewicz S; Kalinowski S
    Biochim Biophys Acta; 2004 Mar; 1661(2):196-203. PubMed ID: 15003882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronopotentiometric technique as a method for electrical characterization of bilayer lipid membranes.
    Naumowicz M; Figaszewski ZA
    J Membr Biol; 2011 Mar; 240(1):47-53. PubMed ID: 21249348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable chronopotentiometry as a tool for the study of electroporation and resealing of pores in bilayer lipid membranes.
    Koronkiewicz S; Kalinowski S; Bryl K
    Biochim Biophys Acta; 2002 Apr; 1561(2):222-9. PubMed ID: 11997122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronopotentiometric studies of phosphatidylcholine bilayers modified by ergosterol.
    Naumowicz M; Petelska AD; Figaszewski ZA
    Steroids; 2011; 76(10-11):967-73. PubMed ID: 21641920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore formation in lipid bilayer membranes made of phosphatidylcholine and cholesterol followed by means of constant current.
    Naumowicz M; Figaszewski ZA
    Cell Biochem Biophys; 2013 May; 66(1):109-19. PubMed ID: 23104105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes of structural and dynamic properties of model lipid membranes induced by alpha-tocopherol: implication to the membrane stabilization under external electric field.
    Koronkiewicz S; Kalinowski S; Bryl K
    Biochim Biophys Acta; 2001 Feb; 1510(1-2):300-6. PubMed ID: 11342167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore-pore separation.
    Freeman SA; Wang MA; Weaver JC
    Biophys J; 1994 Jul; 67(1):42-56. PubMed ID: 7919016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of acetylsalicylic acid on the current-voltage characteristics of planar lipid membranes.
    Watala C; Drapeza A; Loban V; Asztemborska M; Shcharbin D
    Biophys Chem; 2009 Jun; 142(1-3):27-33. PubMed ID: 19321250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of lipid electropores II: Comparison of continuum-level modeling of pore conductance to molecular dynamics simulations.
    Rems L; Tarek M; Casciola M; Miklavčič D
    Bioelectrochemistry; 2016 Dec; 112():112-24. PubMed ID: 27091314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroporation of Skin Stratum Corneum Lipid Bilayer and Molecular Mechanism of Drug Transport: A Molecular Dynamics Study.
    Gupta R; Rai B
    Langmuir; 2018 May; 34(20):5860-5870. PubMed ID: 29708340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamically stabilized pores in bilayer membranes.
    Moroz JD; Nelson P
    Biophys J; 1997 May; 72(5):2211-6. PubMed ID: 9129823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular-level characterization of lipid membrane electroporation using linearly rising current.
    Kramar P; Delemotte L; Maček Lebar A; Kotulska M; Tarek M; Miklavčič D
    J Membr Biol; 2012 Oct; 245(10):651-9. PubMed ID: 22886207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model of lipid rearrangements during pore formation in the DPPC lipid bilayer.
    Wrona A; Kubica K
    J Liposome Res; 2018 Sep; 28(3):218-225. PubMed ID: 28641466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of lipid electropores I: Molecular dynamics simulations of stabilized pores by constant charge imbalance.
    Casciola M; Kasimova MA; Rems L; Zullino S; Apollonio F; Tarek M
    Bioelectrochemistry; 2016 Jun; 109():108-16. PubMed ID: 26883056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple conductance states of lipid pores during Voltage-Clamp electroporation.
    Gurunian A; Dean DA
    Bioelectrochemistry; 2023 Jun; 151():108396. PubMed ID: 36805203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecular basis of electroporation.
    Tieleman DP
    BMC Biochem; 2004 Jul; 5():10. PubMed ID: 15260890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring the potential energy barrier to lipid bilayer electroporation.
    Sengel JT; Wallace MI
    Philos Trans R Soc Lond B Biol Sci; 2017 Aug; 372(1726):. PubMed ID: 28630163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-similar processes and flicker noise from a fluctuating nanopore in a lipid membrane.
    Kotulska M; Koronkiewicz S; Kalinowski S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031920. PubMed ID: 15089335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.