BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 9518645)

  • 1. Peptide-liposome association. A critical examination with mastoparan-X.
    Hellmann N; Schwarz G
    Biochim Biophys Acta; 1998 Mar; 1369(2):267-77. PubMed ID: 9518645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of the wasp venom peptide mastoparan with electrically neutral lipid vesicles. Salt effects on partitioning and conformational state.
    Schwarz G; Blochmann U
    FEBS Lett; 1993 Mar; 318(2):172-6. PubMed ID: 8440373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore-forming action of mastoparan peptides on liposomes: a quantitative analysis.
    Arbuzova A; Schwarz G
    Biochim Biophys Acta; 1999 Aug; 1420(1-2):139-52. PubMed ID: 10446298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye.
    Schwarz G; Arbuzova A
    Biochim Biophys Acta; 1995 Oct; 1239(1):51-7. PubMed ID: 7548144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selectivity in the mechanism of action of antimicrobial mastoparan peptide Polybia-MP1.
    dos Santos Cabrera MP; Costa ST; de Souza BM; Palma MS; Ruggiero JR; Ruggiero Neto J
    Eur Biophys J; 2008 Jul; 37(6):879-91. PubMed ID: 18414845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of N-terminal acetylation on lytic activity and lipid-packing perturbation induced in model membranes by a mastoparan-like peptide.
    Alvares DS; Wilke N; Ruggiero Neto J
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):737-748. PubMed ID: 29287697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of acidic residues and amphipathicity on the lytic activities of mastoparan peptides studied by fluorescence and CD spectroscopy.
    Leite NB; da Costa LC; Dos Santos Alvares D; Dos Santos Cabrera MP; de Souza BM; Palma MS; Ruggiero Neto J
    Amino Acids; 2011 Jan; 40(1):91-100. PubMed ID: 20195659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of wasp venom mastoparan with biomembranes.
    Katsu T; Kuroko M; Morikawa T; Sanchika K; Yamanaka H; Shinoda S; Fujita Y
    Biochim Biophys Acta; 1990 Aug; 1027(2):185-90. PubMed ID: 2204429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of a membrane potential on the interaction of mastoparan X, a mitochondrial presequence, and several regulatory peptides with phospholipid vesicles.
    de Kroon AI; de Gier J; de Kruijff B
    Biochim Biophys Acta; 1991 Sep; 1068(2):111-24. PubMed ID: 1680397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of lipophilic peptides derived from mastoparan with phospholipid vesicles.
    Niidome T; Kawakami R; Okamoto K; Ohmori N; Mihara H; Aoyagi H
    J Pept Res; 1997 Dec; 50(6):458-64. PubMed ID: 9440047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides.
    Vold RR; Prosser RS; Deese AJ
    J Biomol NMR; 1997 Apr; 9(3):329-35. PubMed ID: 9229505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MP-V1 from the Venom of Social Wasp Vespula vulgaris Is a de Novo Type of Mastoparan that Displays Superior Antimicrobial Activities.
    Kim Y; Son M; Noh EY; Kim S; Kim C; Yeo JH; Park C; Lee KW; Bang WY
    Molecules; 2016 Apr; 21(4):512. PubMed ID: 27104500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation and lytic activity of eumenine mastoparan: a new antimicrobial peptide from wasp venom.
    dos Santos Cabrera MP; de Souza BM; Fontana R; Konno K; Palma MS; de Azevedo WF; Neto JR
    J Pept Res; 2004 Sep; 64(3):95-103. PubMed ID: 15317499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probable role of amphiphilicity in the binding of mastoparan to calmodulin.
    McDowell L; Sanyal G; Prendergast FG
    Biochemistry; 1985 Jun; 24(12):2979-84. PubMed ID: 4016082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective acylation enhances membrane charge sensitivity of the antimicrobial peptide mastoparan-x.
    Etzerodt T; Henriksen JR; Rasmussen P; Clausen MH; Andresen TL
    Biophys J; 2011 Jan; 100(2):399-409. PubMed ID: 21244836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a novel analysis to measure the binding of the membrane-translocating peptide penetratin to negatively charged liposomes.
    Persson D; Thorén PE; Herner M; Lincoln P; Nordén B
    Biochemistry; 2003 Jan; 42(2):421-9. PubMed ID: 12525169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction and structure induction of cell-penetrating peptides in the presence of phospholipid vesicles.
    Magzoub M; Kilk K; Eriksson LE; Langel U; Gräslund A
    Biochim Biophys Acta; 2001 May; 1512(1):77-89. PubMed ID: 11334626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the aspartic acid D2 on the affinity of Polybia-MP1 to anionic lipid vesicles.
    Leite NB; Dos Santos Alvares D; de Souza BM; Palma MS; Ruggiero Neto J
    Eur Biophys J; 2014 May; 43(4-5):121-30. PubMed ID: 24595375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the bilayer composition on the binding and membrane disrupting effect of Polybia-MP1, an antimicrobial mastoparan peptide with leukemic T-lymphocyte cell selectivity.
    dos Santos Cabrera MP; Arcisio-Miranda M; Gorjão R; Leite NB; de Souza BM; Curi R; Procopio J; Ruggiero Neto J; Palma MS
    Biochemistry; 2012 Jun; 51(24):4898-908. PubMed ID: 22630563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic and kinetic studies on the association of melittin with a phospholipid bilayer.
    Schwarz G; Beschiaschvili G
    Biochim Biophys Acta; 1989 Feb; 979(1):82-90. PubMed ID: 2917170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.