BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 9518705)

  • 1. Properties and glial origin of osmotic-dependent release of taurine from the rat supraoptic nucleus.
    Deleuze C; Duvoid A; Hussy N
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):463-71. PubMed ID: 9518705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmoregulation of vasopressin secretion via activation of neurohypophysial nerve terminals glycine receptors by glial taurine.
    Hussy N; Brès V; Rochette M; Duvoid A; Alonso G; Dayanithi G; Moos FC
    J Neurosci; 2001 Sep; 21(18):7110-6. PubMed ID: 11549721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neurones: possible role in osmoregulation.
    Hussy N; Deleuze C; Pantaloni A; Desarménien MG; Moos F
    J Physiol; 1997 Aug; 502 ( Pt 3)(Pt 3):609-21. PubMed ID: 9279812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological characterization of volume-sensitive, taurine permeable anion channels in rat supraoptic glial cells.
    Brès V; Hurbin A; Duvoid A; Orcel H; Moos FC; Rabié A; Hussy N
    Br J Pharmacol; 2000 Aug; 130(8):1976-82. PubMed ID: 10952690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrosine phosphorylation modulates the osmosensitivity of volume-dependent taurine efflux from glial cells in the rat supraoptic nucleus.
    Deleuze C; Duvoid A; Moos FC; Hussy N
    J Physiol; 2000 Mar; 523 Pt 2(Pt 2):291-9. PubMed ID: 10699075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmotic regulation of neuronal activity: a new role for taurine and glial cells in a hypothalamic neuroendocrine structure.
    Hussy N; Deleuze C; Desarménien MG; Moos FC
    Prog Neurobiol; 2000 Oct; 62(2):113-34. PubMed ID: 10828380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmoregulated taurine transport in H4IIE hepatoma cells and perfused rat liver.
    Warskulat U; Wettstein M; Häussinger D
    Biochem J; 1997 Feb; 321 ( Pt 3)(Pt 3):683-90. PubMed ID: 9032454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vasopressin-induced taurine efflux from rat pituicytes: a potential negative feedback for hormone secretion.
    Rosso L; Peteri-Brunbäck B; Poujeol P; Hussy N; Mienville JM
    J Physiol; 2004 Feb; 554(Pt 3):731-42. PubMed ID: 14617676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of a hyposmotic shock on amino acid efflux from lactating rat mammary tissue: stimulation of taurine and glycine efflux via a pathway distinct from anion exchange and volume-activated anion channels.
    Shennan DB; McNeillie SA; Curran DE
    Exp Physiol; 1994 Sep; 79(5):797-808. PubMed ID: 7529510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volume regulation in NIH/3T3 cells not expressing P-glycoprotein. II. Chloride and amino acid fluxes.
    Morán J; Miranda D; Peña-Segura C; Pasantes-Morales H
    Am J Physiol; 1997 Jun; 272(6 Pt 1):C1804-9. PubMed ID: 9227408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of volume regulation and efflux of osmoregulatory amino acids by blockers of Cl- transport in cultured astrocytes.
    Sánchez-Olea R; Peña C; Morán J; Pasantes-Morales H
    Neurosci Lett; 1993 Jun; 156(1-2):141-4. PubMed ID: 8414176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of volume-stimulated osmolyte and anion channels in volume regulation by mammalian sperm.
    Petrunkina AM; Harrison RA; Ekhlasi-Hundrieser M; Töpfer-Petersen E
    Mol Hum Reprod; 2004 Nov; 10(11):815-23. PubMed ID: 15361553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New role of taurine as an osmomediator between glial cells and neurons in the rat supraoptic nucleus.
    Hussy N; Deleuze C; Brès V; Moos FC
    Adv Exp Med Biol; 2000; 483():227-37. PubMed ID: 11787602
    [No Abstract]   [Full Text] [Related]  

  • 14. Mechanisms of enhanced taurine release under Ca2+ depletion.
    Molchanova SM; Oja SS; Saransaari P
    Neurochem Int; 2005 Oct; 47(5):343-9. PubMed ID: 15982785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmolarity-sensitive release of free amino acids from cultured kidney cells (MDCK).
    Sánchez Olea R; Pasantes-Morales H; Lázaro A; Cereijido M
    J Membr Biol; 1991 Apr; 121(1):1-9. PubMed ID: 1646888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation by extracellular Cl- of volume-activated organic osmolyte and halide permeabilities in HeLa cells.
    Stutzin A; Eguiguren AL; Cid LP; Sepúlveda FV
    Am J Physiol; 1997 Sep; 273(3 Pt 1):C999-1007. PubMed ID: 9316421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Taurine release is enhanced in cell-damaging conditions in cultured cerebral cortical astrocytes.
    Saransaari P; Oja SS
    Neurochem Res; 1999 Dec; 24(12):1523-9. PubMed ID: 10591401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of the ATP potentiation of hyposmotic taurine release in Swiss 3T3 fibroblasts.
    Franco R; Rodríguez R; Pasantes-Morales H
    Pflugers Arch; 2004 Nov; 449(2):159-69. PubMed ID: 15322850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taurine release by astrocytes modulates osmosensitive glycine receptor tone and excitability in the adult supraoptic nucleus.
    Choe KY; Olson JE; Bourque CW
    J Neurosci; 2012 Sep; 32(36):12518-27. PubMed ID: 22956842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyposmotically induced amino acid release from the rat cerebral cortex: role of phospholipases and protein kinases.
    Estevez AY; O'Regan MH; Song D; Phillis JW
    Brain Res; 1999 Oct; 844(1-2):1-9. PubMed ID: 10536255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.