These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 951881)

  • 1. Measurement of the transmittance coefficient spectrum of Cuprophan and RP69 membranes: applications to middle molecule removal via ultrafiltration.
    Green DM; Antwiler GD; Moncrief JW; Decherd JF; Popovich RP
    Trans Am Soc Artif Intern Organs; 1976; 22():627-36. PubMed ID: 951881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Undried cellulose gel film-- a high permeability dialysis membrane.
    Hoenich NA; Kerr DN; Mackenzie JC; Parker AS
    Proc Eur Dial Transplant Assoc; 1976; 12():565-70. PubMed ID: 935138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial clinical evaluation of the Hospal artificial kidney system.
    Kirkwood RG; O'Brien M; Butruille Y; Lazarus JM; Gottlieb MN; Lowrie EG
    Trans Am Soc Artif Intern Organs; 1978; 24():509-15. PubMed ID: 716049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro permeability studies of peritoneal (P), cuprophan (C), and polycarbonate (PCM) membranes.
    Pitts T; Mackey M; Barbour GL
    Trans Am Soc Artif Intern Organs; 1978; 24():150-4. PubMed ID: 715993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of convective transport on dialyzer clearance.
    Galach M; Ciechanowska A; Sabalińska S; Waniewski J; Wójcicki J; Weryńskis A
    J Artif Organs; 2003; 6(1):42-8. PubMed ID: 14598124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of haemodialysis membranes on beta 2-microglobulin kinetics: in vivo and in vitro studies.
    Zingraff J; Beyne P; Ureña P; Uzan M; Nguyen Khoa Man ; Descamps-Latscha B; Drüeke T
    Nephrol Dial Transplant; 1988; 3(3):284-90. PubMed ID: 3140102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of beta-casein peptides through UF inorganic membranes.
    Nau F; Kerhervé FL; Léonil J; Daufin G; Aimar P
    Bioseparation; 1992-1993; 3(4):205-15. PubMed ID: 1369244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preliminary technical and clinical evaluation of a new hollow fiber dialyzer with a 5 microns thick cuprophan membrane.
    Ronco C; Brendolan A; Bragantini L; Chiaramonte S; Fabris A; Feriani M; Dell'Aquila R; Milan M; La Greca G
    Clin Nephrol; 1986; 26 Suppl 1():S17-21. PubMed ID: 3829463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical use of NISR 440 polycarbonate membrane for hemodialysis.
    Barbour BH; Bernstein M; Cantor PA; Fisher BS; Stone W
    Trans Am Soc Artif Intern Organs; 1975; 21():144-55. PubMed ID: 1145988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dialysis membranes: cellulose acetate compared with other available membrane materials.
    Miller JH; Shinaberger JH; Martin FE
    Med Instrum; 1974; 8(3):214-7. PubMed ID: 4838452
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of protein adsorption on the transport characteristics of asymmetric ultrafiltration membranes.
    Mochizuki S; Zydney AL
    Biotechnol Prog; 1992; 8(6):553-61. PubMed ID: 1369038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro performance of hemodialysis membranes after repeated processing.
    Johnson A; Mishkin GJ; Lew SQ; Mishkin M; Abramson F; Lecchi P
    Am J Kidney Dis; 2003 Sep; 42(3):561-6. PubMed ID: 12955685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of cuprophan and polysulfone membranes on dialyzer reusability and intradialytic complications.
    Kadiri S; Kehinde Z; Arije A; Salako BL
    Afr J Med Med Sci; 2001 Sep; 30(3):191-4. PubMed ID: 14510127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cefepime and continuous renal replacement therapy (CRRT): in vitro permeability of two CRRT membranes and pharmacokinetics in four critically ill patients.
    Isla A; Gascón AR; Maynar J; Arzuaga A; Toral D; Pedraz JL
    Clin Ther; 2005 May; 27(5):599-608. PubMed ID: 15978309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention of small charged impurities during ultrafiltration.
    Shao J; Zydney AL
    Biotechnol Bioeng; 2004 Jul; 87(1):7-13. PubMed ID: 15211483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. beta 2-Microglobulin and other low molecular weight proteins in haemodiafiltrates and in haemofiltrates.
    Montali U; Pilone N; Cioni L; Ronca G
    Int J Tissue React; 1984; 6(1):71-4. PubMed ID: 6370888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that drug flux across synthetic membranes is described by normally distributed permeability coefficients.
    Frum Y; Eccleston GM; Meidan VM
    Eur J Pharm Biopharm; 2007 Sep; 67(2):434-9. PubMed ID: 17459683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of protein fouling during ultrafiltration using a two-layer membrane model.
    Boyd RF; Zydney AL
    Biotechnol Bioeng; 1998 Aug; 59(4):451-60. PubMed ID: 10099359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular separation as an artificial kidney technique.
    Dorson WJ; Markovitz M; Pizziconi VB; Walters JA
    Trans Am Soc Artif Intern Organs; 1970; 16():127-33. PubMed ID: 5465827
    [No Abstract]   [Full Text] [Related]  

  • 20. Charged ultrafiltration membranes increase the selectivity of whey protein separations.
    Bhushan S; Etzel MR
    J Food Sci; 2009 Apr; 74(3):E131-9. PubMed ID: 19397718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.