These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 9520136)

  • 1. Structure-activity relationships of volatile organic chemicals as sensory irritants.
    Alarie Y; Schaper M; Nielsen GD; Abraham MH
    Arch Toxicol; 1998 Feb; 72(3):125-40. PubMed ID: 9520136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereospecificity of the sensory irritation receptor for nonreactive chemicals illustrated by pinene enantiomers.
    Kasanen JP; Pasanen AL; Pasanen P; Liesivuori J; Kosma VM; Alarie Y
    Arch Toxicol; 1998; 72(8):514-23. PubMed ID: 9765067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the sensory irritating potency of airborne nonreactive volatile organic chemicals and their mixtures.
    Alarie Y; Schaper M; Nielsen GD; Abraham MH
    SAR QSAR Environ Res; 1996; 5(3):151-65. PubMed ID: 9114512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical properties of nonreactive volatile organic chemicals to estimate RD50: alternatives to animal studies.
    Alarie Y; Nielsen GD; Andonian-Haftvan J; Abraham MH
    Toxicol Appl Pharmacol; 1995 Sep; 134(1):92-9. PubMed ID: 7676461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative structure-activity relationship models for prediction of sensory irritants (logRD50) of volatile organic chemicals.
    Luan F; Ma W; Zhang X; Zhang H; Liu M; Hu Z; Fan BT
    Chemosphere; 2006 May; 63(7):1142-53. PubMed ID: 16307788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensory irritation mechanisms investigated from model compounds: trifluoroethanol, hexafluoroisopropanol and methyl hexafluoroisopropyl ether.
    Nielsen GD; Abraham MH; Hansen LF; Hammer M; Cooksey CJ; Andonian-Haftvan J; Alarie Y
    Arch Toxicol; 1996; 70(6):319-28. PubMed ID: 8975630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Relation between the toxicity of molecules of industrial value and their physico-chemical properties: test of upper airway irritation applied to 4 chemical groups].
    Muller J; Greff G
    Food Chem Toxicol; 1984 Aug; 22(8):661-4. PubMed ID: 6540741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a database for sensory irritants and its use in establishing occupational exposure limits.
    Schaper M
    Am Ind Hyg Assoc J; 1993 Sep; 54(9):488-544. PubMed ID: 8379496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical approach to the Ferguson principle and its use with non-reactive and reactive airborne chemicals.
    Alarie Y; Nielsen GD; Abraham MH
    Pharmacol Toxicol; 1998 Dec; 83(6):270-9. PubMed ID: 9868746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensory irritation structure-activity study of inhaled aldehydes in B6C3F1 and Swiss-Webster mice.
    Steinhagen WH; Barrow CS
    Toxicol Appl Pharmacol; 1984 Mar; 72(3):495-503. PubMed ID: 6710500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative acute effects of some chemicals on the skin of rabbits and guinea pigs.
    Roudabush RL; Terhaar CJ; Fassett DW; Dziuba SP
    Toxicol Appl Pharmacol; 1965 Jul; 7(4):559-65. PubMed ID: 5839391
    [No Abstract]   [Full Text] [Related]  

  • 12. [Analysis of acute toxicity (LD50-value) or organic chemicals to mammals by solubility parameter (delta) (2). Acute oral toxicity to mice].
    Nishimura H; Saito S; Kishida F; Matsuo M
    Sangyo Igaku; 1994 Nov; 36(6):421-7. PubMed ID: 7844898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative structure-activity relationships for nasal pungency thresholds of volatile organic compounds.
    Hau KM; Connell DW; Richardson BJ
    Toxicol Sci; 1999 Jan; 47(1):93-8. PubMed ID: 10048157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analysis of nasal irritation thresholds using a new solvation equation.
    Abraham MH; Andonian-Haftvan J; Cometto-Muñiz JE; Cain WS
    Fundam Appl Toxicol; 1996 May; 31(1):71-6. PubMed ID: 8998955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a decision support system for the introduction of alternative methods into local irritancy/corrosivity testing strategies. Creation of fundamental rules for a decision support system.
    Gerner I; Zinke S; Graetschel G; Schlede E
    Altern Lab Anim; 2000; 28(5):665-98. PubMed ID: 11091765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensory irritation and pulmonary irritation by airborne allyl acetate, allyl alcohol, and allyl ether compared to acrolein.
    Nielsen GD; Bakbo JC; Holst E
    Acta Pharmacol Toxicol (Copenh); 1984 Apr; 54(4):292-8. PubMed ID: 6730984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A proposal for calculating occupational exposure limits for volatile organic compounds acting as sensory irritants on the basis of their physicochemical properties.
    Jakubowski M; Czerczak S
    J Occup Environ Hyg; 2010 Jul; 7(7):429-34. PubMed ID: 20473819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The involvement of TRP channels in sensory irritation: a mechanistic approach toward a better understanding of the biological effects of local irritants.
    Lehmann R; Schöbel N; Hatt H; van Thriel C
    Arch Toxicol; 2016 Jun; 90(6):1399-413. PubMed ID: 27037703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative structure-property relationships modeling of skin irritation.
    Golla S; Madihally S; Robinson RL; Gasem KA
    Toxicol In Vitro; 2009 Feb; 23(1):176-84. PubMed ID: 19027061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating sensory irritation potency of volatile organic chemicals using QSARs based on decision tree methods for regulatory purpose.
    Gupta S; Basant N; Singh KP
    Ecotoxicology; 2015 May; 24(4):873-86. PubMed ID: 25707485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.