BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 9520279)

  • 41. Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit.
    Ding CK; Wang CY; Gross KC; Smith DL
    Planta; 2002 Apr; 214(6):895-901. PubMed ID: 11941466
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel gene of tomato preferentially expressed in fruit encodes a protein with a Ca2+-dependent lipid-binding domain.
    Kiyosue T; Ryan CA
    Plant Mol Biol; 1997 Dec; 35(6):969-72. PubMed ID: 9426616
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sequence analysis of the second largest subunit of tomato RNA polymerase II.
    Warrilow D; Symons RH
    Plant Mol Biol; 1996 Jan; 30(2):337-42. PubMed ID: 8616257
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Isolation and characterization of the main small heat shock proteins induced in tomato pericarp by thermal treatment.
    Polenta GA; Calvete JJ; González CB
    FEBS J; 2007 Dec; 274(24):6447-55. PubMed ID: 18021250
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heat treatment of peach fruit: modifications in the extracellular compartment and identification of novel extracellular proteins.
    Bustamante CA; Budde CO; Borsani J; Lombardo VA; Lauxmann MA; Andreo CS; Lara MV; Drincovich MF
    Plant Physiol Biochem; 2012 Nov; 60():35-45. PubMed ID: 22902552
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protective proteins are differentially expressed in tomato genotypes differing for their tolerance to low-temperature storage.
    Page D; Gouble B; Valot B; Bouchet JP; Callot C; Kretzschmar A; Causse M; Renard CM; Faurobert M
    Planta; 2010 Jul; 232(2):483-500. PubMed ID: 20480178
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The involvement of chloroplast HSP100/ClpB in the acquired thermotolerance in tomato.
    Yang JY; Sun Y; Sun AQ; Yi SY; Qin J; Li MH; Liu J
    Plant Mol Biol; 2006 Oct; 62(3):385-95. PubMed ID: 16912911
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Overexpression of chloroplast-localized small molecular heat-shock protein enhances chilling tolerance in tomato plant.
    Wang L; Zhao CM; Wang YJ; Liu J
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Apr; 31(2):167-74. PubMed ID: 15840935
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cloning of 1-aminocyclopropane-1-carboxylate (ACC) synthetase cDNA and the inhibition of fruit ripening by its antisense RNA in transgenic tomato plants.
    Liu C; Tian Y; Shen Q; Jiang H; Ju R; Yan T; Liu C; Mang K
    Chin J Biotechnol; 1998; 14(2):75-84. PubMed ID: 10196631
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development.
    de Jong M; Wolters-Arts M; Feron R; Mariani C; Vriezen WH
    Plant J; 2009 Jan; 57(1):160-70. PubMed ID: 18778404
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cooling water before panicle initiation increases chilling-induced male sterility and disables chilling-induced expression of genes encoding OsFKBP65 and heat shock proteins in rice spikelets.
    Suzuki K; Aoki N; Matsumura H; Okamura M; Ohsugi R; Shimono H
    Plant Cell Environ; 2015 Jul; 38(7):1255-74. PubMed ID: 25496090
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A gene coding for tomato fruit beta-galactosidase II is expressed during fruit ripening. Cloning, characterization, and expression pattern.
    Smith DL; Starrett DA; Gross KC
    Plant Physiol; 1998 Jun; 117(2):417-23. PubMed ID: 9625694
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Expression of arabinogalactan proteins during tomato fruit ripening and in response to mechanical wounding, hypoxia and anoxia.
    Fragkostefanakis S; Dandachi F; Kalaitzis P
    Plant Physiol Biochem; 2012 Mar; 52():112-8. PubMed ID: 22305074
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [cDNA cloning and expression of a cytosolic small heat shock protein gene (CaHSP18) from Capsicum annuum].
    Guo SJ; Chen N; Guo P; Meng QW
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Aug; 31(4):409-16. PubMed ID: 16121013
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of phenylalanine ammonia-lyase in heat pretreatment-induced chilling tolerance in banana fruit.
    Chen JY; He LH; Jiang YM; Wang Y; Joyce DC; Ji ZL; Lu WJ
    Physiol Plant; 2008 Mar; 132(3):318-28. PubMed ID: 18275463
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress.
    Shu DF; Wang LY; Duan M; Deng YS; Meng QW
    Plant Physiol Biochem; 2011 Oct; 49(10):1228-37. PubMed ID: 21530286
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The correlation between heat-shock protein accumulation and persistence and chilling tolerance in tomato fruit.
    Sabehat A; Weiss D; Lurie S
    Plant Physiol; 1996 Feb; 110(2):531-7. PubMed ID: 8742333
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Overexpression of a novel NAC-type tomato transcription factor, SlNAM1, enhances the chilling stress tolerance of transgenic tobacco.
    Li XD; Zhuang KY; Liu ZM; Yang DY; Ma NN; Meng QW
    J Plant Physiol; 2016 Oct; 204():54-65. PubMed ID: 27518221
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Overexpression of zeaxanthin epoxidase gene enhances the sensitivity of tomato PSII photoinhibition to high light and chilling stress.
    Wang N; Fang W; Han H; Sui N; Li B; Meng QW
    Physiol Plant; 2008 Mar; 132(3):384-96. PubMed ID: 18275469
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isolation and characterization of a gene encoding a drought-induced cysteine protease in tomato (Lycopersicon esculentum).
    Harrak H; Azelmat S; Baker EN; Tabaeizadeh Z
    Genome; 2001 Jun; 44(3):368-74. PubMed ID: 11444695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.